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Abstract

The paper focuses on the classes of the k-hypergeneralized projectors and, especially hypergeneralized projectors.
Several features of these classes are identified, and properties are characterized.
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INTRODUCTION

Let C™™ denote the set of all n X m
complex matrices. For a matrix A € C"*™,
the symbols A%, R(A) and r (A) will stand for
the conjugate transpose matrix, range and
rank of A, respectively. Also, for a matrix
A € C™™, we denote by tr(A) and g (A) the
trace and the spectrum of A, respectively.
Henceforth, for k € N and k > 1, the set of
complex roots of 1 shall be denoted by gy,
and if we set wy = e?™/k, then o, =
{00, @, ..., 0"}, By I, we will represent
the identity matrix of order n. We denote that
A° = [, for A € CV",

The matrix P € C"™*" satisfying P2 = P is
called the projector (the idempotent matrix),
until the matrix P € C*™*" satisfying P? =
P = P* is called the orthogonal projector. A
matrix B € C™*" is said to be similar to a
matrix A € C™*™ if there exists a nonsingular
matrix P € C"*" such that B = P"1AP. If a
matrix A € C™" is similar to a diagonal
matrix, then A is said to be diagonalizable.

The Moore-Penrose inverse of A is the
unique matrix AT satisfying the equations:

(1) AATA = A, (2) ATAAT = AT,

(3) (AAN)* = AAT, (4) (ATA)* = ATA.
The EP matrix (the range-Hermitian matrix)
is the matrix A € C™" such that ATA =
A AT, ie. R(A) = R(4").
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The index of a matrix A € C"™™, is the
smallest nonnegative integer k such that
r(Ak*1) = r(A%), denoted by Ind(A). For
A€eC™, Ind(A) =k, the matrix X €
C™*Msatisfying

(1) AkxA = A%, (2)XAX =X,

(5) XA = AX

is called the Drazin inverse of A and is
denoted by X = A%. If Ind(A) = 1, then this
special case of the Drazin inverse is known
as the group inverse and is denoted by A
In 1997, Grop and Trenkler [1] introduced
hypergeneralized projectors:
the hypergenerelized projector is a square
matrix such that 42 = AT,
Later, in [2 — 6], different properties of
hypergeneralized projector are given and
finally by Tosi¢ [7] who introduced k-
hypergeneralized projectors defined by the
following:
the k-hypergenerelized projector is a square
matrix such that A¥ = AT,
Different  topics  related to k-
hypergeneralized projectors an, especially
hypergenerlized projectors have been
investigated extensively in the past decades.
Inspired by the above-mentioned results, we
will presents some characterizations of these
classes of matrices are given in terms of the
Moore-Penrose inverse, the EP matrix and
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the conjugate transpose matrix, as well as
appropriate matrix expressions.

K-HYPERGENERALIZED
PROJECTORS
In this section, we give some

characterizations of k-hypergeneralized
projectors. First, we give necessary and
sufficient conditions that A is a k-
hypergeneralized projector.

Theorem 1. ([7]) Let A € C™**™. Then the

following statements are equivalent:

(1) A is a k-hypergeneralized
projector.

(i) A is an EP matrix, o(A) S
o (A) U {0} and A is
diagonalizable.

(iii) A is an EP matrix and A**2 = A.

(iv) A has the following representation

A=U[Ig 8]U*, where U €

C™™ is an unitary matrix and K €

is a nonsingular matrix such
that K**1 =,

If A is a k-hypergeneralized projector,
then A**1 is the orthogonal projector onto
R(A). Also, the converse implication is
valid.

Theorem 2. ([7]) Let A € C™*™. Then A
is a k-hypergeneralized projector if and only
if A**1 is the orthogonal projector onto
R(A).

Corollary 3. ([7]) Let A € C™*" be a k-
hypergeneralized projector. Then r(A4) =
tr(Ak+D).

The next result represents necessary and
sufficient conditions for A € C™*" be a k-
hypergeneralized projector.

Theorem 4. ([7]) Let A € C**™. Then the
following statements are equivalent:

(1) A is a k-hypergeneralized

@TXT

projector.

(i) A" is a k-hypergeneralized
projector.

(i) AY is a k-hypergeneralized
projector.

Notice that if A is a k-hypergeneralized
projector, then AT =A% =44 =A% =
Am(k+1)+k m € N.

The following theorem singles out a
sufficient condition for the equivalence of A
being a k-hypergeneralized projector and A
being an EP matrix.

Theorem 5. ([7]) Let A € C™*™. Assume
there exists B € C™" such that B is a k-
hypergeneralized projector and A%> = AB or
A? = BA. Then A is a k-hypergeneralized
projector if and only if A is an EP matrix.

In the following theorem, we give several
characterizations of k-hypergeneralized
projectors.

Theorem 6. ([8]) Let A € C™*™. Then the
following statements are equivalent:

(1) A is a k-hypergeneralized

projector.

(i) Akl = ATA.

(iii)) AF*' = AAT.

(iv) A4t = 4T,

(v)  ATAkTL = AT,

The next result implies that k-
hypergeneralized  projectors can  be
characterized by some equalities involving
the conjugate transpose matrix.

Theorem 7. Let A € C™*™. Then the
following statements are equivalent:

(1) A is a k-hypergeneralized

projector.

(11) A= Ak+2, (Ak+1)* — Ak+1.

(i) A= AF*2 AAT = ATA.

(iv) A= A2 ATAAAT = AATATA.

(v)  A* = Akt1AY,

(vi) A* = A*AF*L,

(vii) A= (4")F1A.

(viii) A = A(AH)**,

(ix) A=Ak2 AT = A4k,

(x) A= A2 AT = (4aHkHA.

Proof. If A is a k-hypergeneralized
projector, then it commutes with AT and
AT = A% It is not difficult to verify that
conditions (ii)-(x) hold.

(i) = (i) Suppose that A = A*¥*? and
(AF+1)* = A¥+1 Then we have
AARA = AR*2 = 4,
AkAAk — Ak+2Ak—1 — AAk—l — Ak,
(AAk)* — (Ak+1)* — Ak+1 — AAk,
(AkA)* — (Ak+1)* — Ak+1 — AkA
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Hence, AT = A¥, ie. A is a hypergeneralized
projector.
(iii)=> (i) From A = A**2 and AA* = A% A,
we obtained

AF = AAF~24

= (AATA)A*2(AATA)

= ATAK*24T = ATAAT = AT,

Thus, A is a k-hypergeneralized projector.
(iv) = (iii) The equalities ATAAAT =
AATATA and A**? = A give

ATA = ATAK2 = AT4AAF =
ATA(AATA)AF = (ATAAAN)AA* =
(AATATA)AAK = AATAT(AAAF) =
AATATARTZ = AATATA.

Similarly, we obtained AAT = AATAA.
Since, A = A¥*2, we conclude that the
condition (iii) holds.

(v)= (i) Applying involution to the
equality A* = A¥*14*, we conclude that A =
A(A*T1)*, Also, by (v), we get

Ak+1 — AkA — Ak(A*)* — Ak(Ak+1A*)* —
AkA(Ak+1)* — Ak+1A*(Ak)* — A*(Ak)* —
(Ak+1)*_

Now, A = A(AK*1)* = AA*H! = Ak+2,

Therefore, the condition (i) is satisfied.
(vi)= (i1) This part can be proved in a
similar way as (v) = (ii).
(vil) = (vi) Applying involution to the
equality A = (A)**14, we get A* =
A*A**, Hence, the equality (vi) follows
from the equality (vii).
(viii) = (v) This follows similary as in the
part (vii) = (vi).
(ix) => (v) It is well-known that A* =
ATAA* = A" AAT. Now, if AT = A(47)F*?
and A = A¥*2 hold, then
Ak+2A* — Ak+1AA* — Ak+1A‘|'AA*

— Ak+1A(A*)k+1AA*

— Ak+2(A*)k+1AA*

= A(A)FT1AA* = ATAAY

= A"

Thus, the condition (v) are proved.
(x) = (vi) This implication can be obtained
in the same manner as in (ix) = (V).

HYPERGENERALIZED
PROJECTORS

If we specialize to k=2 in the previous
similarly, ~we obtained results for
hypergeneralized projectors. The following
results are given in [1] and [4].

Theorem 8. Let A € C™*™. Then the
following statements are equivalent:

(1) A is a hypergeneralized projector.

(i) A is an EP matrix, g(4) S

a,(4) u {0} and A is
diagonalizable.

(iii)) A is an EP matrix and A* = A.

(iv) A has the following representation

K O]U*, where U €

A=U 0 0
is an unitary matrix and K €
is a nonsingular matrix such
that K3 = I...

Theorem 9. Let A € C™™. Then A is a
hypergeneralized projector if and only if A3
is the orthogonal projector onto R (A).

Corollary 10. Let A€ C™™ be a
hypergeneralized projector. Then r(A4) =
tr(43).

Theorem 11. Let A € C™™. Then the
following statements are equivalent:

(Cnxn

(CT'XT

(1) A is a hypergeneralized projector.

(i) A" is a  hypergeneralized
projector.

(iii) AY is a  hypergeneralized
projector.

Notice that if A is a k-hypergeneralized
projector, then AT =A% =4%=4%=
A3M+2 e N.

Theorem 12. Let A € C™*™. Assume there
exists B € C"™ such that B is a
hypergeneralized projector and A%> = AB or
A%? = BA. Then A is a hypergeneralized
projector if and only if A is an EP matrix.

The following theorem is the corollary of
Theorem 6 for k=2. It is given some
necessary and sufficient conditions for
characterizations  of  hypergeneralized
projectors.

Theorem 13. Let A € C™™. Then the
following statements are equivalent:

(1) A is a hypergeneralized projector.

(i) A3 =ATA
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(iii) A3 = AA*.
(iv) A3At = At
(v) ATA3 = At

The next result implies  that
hypergeneralized  projectors can  be
characterized by some equalities involving
the conjugate transpose matrix. It is the
corollary of Theorem 7 for k=2.

Theorem 14. Let A € C™™. Then the
following statements are equivalent:

(1) A is a hypergeneralized projector.
(i) A= A% (43 = 43

(iii) A =A% AAT = ATA.

(iv) A= A% ATAAAT = AATATA.

(v) A" = A3A",

(vi) A" = A*A3,

(vii) A = (4%)3A.

(viii) A = A(4%)3.

(ix) A=A%AT=A404"3.

(x) A=A%AT =(4")3A.

CONCLUSION

In this paper, we considered k-
hypergeneralized projectors and, especially
hypergeneralized projectors. Precisely, we
characterized k-hypergeneralized projectors
and hypergenerealized projectors in terms of
equations involving their adjoints, the EP
matrix and different characterizations of the
Moore-Penrose inverse. We conclude that
neither the rank nor the properties of
operator matrices are necessary for the
characterization of  k-hypergeneralized
projectors and hypergenerealized projectors.
The characterization of k-hypergeneralized
projectors and, especially hypergeneralized
projectors is significant because these types
of matrices are an indispensable part of
modern mathematics and science.
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