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Abstract 
The paper focuses on the classes of the k-hypergeneralized projectors and, especially hypergeneralized projectors. 
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INTRODUCTION 
    Let ℂ𝑛𝑛×𝑚𝑚 denote the set of all 𝑛𝑛 × 𝑚𝑚 
complex matrices. For a matrix 𝐴𝐴 ∈ ℂ𝑛𝑛×𝑚𝑚, 
the symbols 𝐴𝐴∗, 𝑅𝑅(𝐴𝐴) and 𝑟𝑟(𝐴𝐴) will stand for 
the conjugate transpose matrix, range and 
rank of 𝐴𝐴, respectively. Also, for a matrix 
𝐴𝐴 ∈ ℂ𝑛𝑛×𝑛𝑛, we denote by 𝑡𝑡𝑟𝑟(𝐴𝐴) and 𝜎𝜎(𝐴𝐴) the 
trace and the spectrum of 𝐴𝐴, respectively. 
Henceforth, for 𝑘𝑘 ∈ ℕ and 𝑘𝑘 > 1, the set of 
complex roots of 1 shall be denoted by 𝜎𝜎𝑘𝑘 
and if we set 𝜔𝜔𝑘𝑘 = 𝑒𝑒2𝜋𝜋𝜋𝜋/𝑘𝑘, then 𝜎𝜎𝑘𝑘 =
�𝜔𝜔𝑘𝑘

0,𝜔𝜔𝑘𝑘
1 , … ,𝜔𝜔𝑘𝑘

𝑘𝑘/1�. By 𝐼𝐼𝑛𝑛 we will represent
the identity matrix of order 𝑛𝑛. We denote that 
𝐴𝐴0 = 𝐼𝐼𝑛𝑛, for 𝐴𝐴 ∈ ℂ𝑛𝑛×𝑛𝑛. 
The matrix 𝑃𝑃 ∈ ℂ𝑛𝑛×𝑛𝑛 satisfying 𝑃𝑃2 = 𝑃𝑃 is 
called the projector (the idempotent matrix), 
until the matrix 𝑃𝑃 ∈ ℂ𝑛𝑛×𝑛𝑛 satisfying 𝑃𝑃2 =
𝑃𝑃 = 𝑃𝑃∗ is called the orthogonal projector. A 
matrix 𝐵𝐵 ∈ ℂ𝑛𝑛×𝑛𝑛 is said to be similar to a 
matrix 𝐴𝐴 ∈ ℂ𝑛𝑛×𝑛𝑛 if there exists a nonsingular 
matrix 𝑃𝑃 ∈ ℂ𝑛𝑛×𝑛𝑛 such that 𝐵𝐵 = 𝑃𝑃−1𝐴𝐴𝑃𝑃. If a 
matrix 𝐴𝐴 ∈ ℂ𝑛𝑛×𝑛𝑛 is similar to a diagonal 
matrix, then 𝐴𝐴 is said to be diagonalizable. 
The Moore-Penrose inverse of 𝐴𝐴 is the 
unique matrix 𝐴𝐴† satisfying the equations: 

(1) 𝐴𝐴𝐴𝐴†𝐴𝐴 = 𝐴𝐴, (2) 𝐴𝐴†𝐴𝐴𝐴𝐴† = 𝐴𝐴†, 
(3) (𝐴𝐴𝐴𝐴†)∗ = 𝐴𝐴𝐴𝐴†, (4) (𝐴𝐴†𝐴𝐴)∗ = 𝐴𝐴†𝐴𝐴. 

The EP matrix (the range-Hermitian matrix) 
is the matrix 𝐴𝐴 ∈ ℂ𝑛𝑛×𝑛𝑛 such that  𝐴𝐴†𝐴𝐴 =
𝐴𝐴 𝐴𝐴†, ie. 𝑅𝑅(𝐴𝐴) = 𝑅𝑅(𝐴𝐴∗). 

The index of a matrix 𝐴𝐴 ∈ ℂ𝑛𝑛×𝑛𝑛, is the 
smallest nonnegative integer 𝑘𝑘 such that 
𝑟𝑟(𝐴𝐴𝑘𝑘+1) = 𝑟𝑟(𝐴𝐴𝑘𝑘), denoted by 𝐼𝐼𝑛𝑛𝐼𝐼(𝐴𝐴). For 
𝐴𝐴 ∈ ℂ𝑛𝑛×𝑛𝑛, 𝐼𝐼𝑛𝑛𝐼𝐼(𝐴𝐴) = 𝑘𝑘, the matrix 𝑋𝑋 ∈
ℂ𝑛𝑛×𝑛𝑛satisfying 

(1𝑘𝑘)𝐴𝐴𝑘𝑘𝑋𝑋𝐴𝐴 = 𝐴𝐴𝑘𝑘, (2)𝑋𝑋𝐴𝐴𝑋𝑋 = 𝑋𝑋, 
(5) 𝑋𝑋𝐴𝐴 = 𝐴𝐴𝑋𝑋 

is called the Drazin inverse of 𝐴𝐴 and is 
denoted by 𝑋𝑋 = 𝐴𝐴𝑑𝑑 . If 𝐼𝐼𝑛𝑛𝐼𝐼(𝐴𝐴) = 1, then this 
special case of the Drazin inverse is known 
as the group inverse and is denoted by 𝐴𝐴#. 
In 1997, Groβ and Trenkler [1] introduced 
hypergeneralized projectors:  
the hypergenerelized projector is a square 
matrix such that 𝐴𝐴2 = 𝐴𝐴†. 
Later, in [2 − 6], different properties of 
hypergeneralized projector are given and 
finally by Tošić [7] who introduced k-
hypergeneralized projectors defined by the 
following: 
the k-hypergenerelized projector is a square 
matrix such that 𝐴𝐴𝑘𝑘 = 𝐴𝐴†. 
Different topics related to k-
hypergeneralized projectors an, especially 
hypergenerlized projectors have been 
investigated extensively in the past decades. 
Inspired by the above-mentioned results, we 
will presents some characterizations of these 
classes of matrices are given in terms of the 
Moore-Penrose inverse, the EP matrix and 
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the conjugate transpose matrix, as well as 
appropriate matrix expressions. 
 
K-HYPERGENERALIZED 
PROJECTORS 

In this section, we give some 
characterizations of k-hypergeneralized 
projectors. First, we give necessary and 
sufficient conditions that 𝐴𝐴 is a k-
hypergeneralized projector. 

Theorem 1. ([7]) Let 𝐴𝐴 ∈ ℂ𝑛𝑛×𝑛𝑛. Then the 
following statements are equivalent: 

(i) 𝐴𝐴 is a k-hypergeneralized 
projector. 

(ii) 𝐴𝐴 is an EP matrix, 𝜎𝜎(𝐴𝐴) ⊆
𝜎𝜎𝑘𝑘(𝐴𝐴) ∪ {0} and 𝐴𝐴 is 
diagonalizable. 

(iii) 𝐴𝐴 is an EP matrix and 𝐴𝐴𝑘𝑘+2 = 𝐴𝐴.  
(iv) 𝐴𝐴 has the following representation 

𝐴𝐴 = 𝑈𝑈 �𝐾𝐾 0
0 0� 𝑈𝑈

∗, where 𝑈𝑈 ∈
ℂ𝑛𝑛×𝑛𝑛 is an unitary matrix and 𝐾𝐾 ∈
ℂ𝑟𝑟×𝑟𝑟 is a nonsingular matrix such 
that 𝐾𝐾𝑘𝑘+1 = 𝐼𝐼𝑟𝑟 . 

If 𝐴𝐴 is a k-hypergeneralized projector, 
then 𝐴𝐴𝑘𝑘+1 is the orthogonal projector onto 
𝑅𝑅(𝐴𝐴). Also, the converse implication is 
valid. 

Theorem 2. ([7]) Let 𝐴𝐴 ∈ ℂ𝑛𝑛×𝑛𝑛. Then 𝐴𝐴 
is a k-hypergeneralized projector if and only 
if 𝐴𝐴𝑘𝑘+1 is the orthogonal projector onto 
𝑅𝑅(𝐴𝐴). 

Corollary 3. ([7]) Let 𝐴𝐴 ∈ ℂ𝑛𝑛×𝑛𝑛 be a k-
hypergeneralized projector. Then 𝑟𝑟(𝐴𝐴) =
𝑡𝑡𝑟𝑟(𝐴𝐴𝑘𝑘+1). 

The next result represents necessary and 
sufficient conditions for 𝐴𝐴 ∈ ℂ𝑛𝑛×𝑛𝑛 be a k-
hypergeneralized projector. 

Theorem 4. ([7]) Let 𝐴𝐴 ∈ ℂ𝑛𝑛×𝑛𝑛. Then the 
following statements are equivalent: 

(i) 𝐴𝐴 is a k-hypergeneralized 
projector. 

(ii) 𝐴𝐴∗ is a k-hypergeneralized 
projector. 

(iii) 𝐴𝐴† is a k-hypergeneralized 
projector. 

Notice that if 𝐴𝐴 is a k-hypergeneralized 
projector, then 𝐴𝐴† = 𝐴𝐴# = 𝐴𝐴𝑑𝑑 = 𝐴𝐴𝑘𝑘 =
𝐴𝐴𝑚𝑚(𝑘𝑘+1)+𝑘𝑘 ,𝑚𝑚 ∈ ℕ. 

The following theorem singles out a 
sufficient condition for the equivalence of 𝐴𝐴 
being a k-hypergeneralized projector and 𝐴𝐴 
being an EP matrix. 

Theorem 5. ([7]) Let 𝐴𝐴 ∈ ℂ𝑛𝑛×𝑛𝑛. Assume 
there exists 𝐵𝐵 ∈ ℂ𝑛𝑛×𝑛𝑛 such that 𝐵𝐵 is a k-
hypergeneralized projector and 𝐴𝐴2 = 𝐴𝐴𝐵𝐵 or 
𝐴𝐴2 = 𝐵𝐵𝐴𝐴. Then 𝐴𝐴 is a k-hypergeneralized 
projector if and only if 𝐴𝐴 is an EP matrix. 

In the following theorem, we give several 
characterizations of k-hypergeneralized 
projectors. 

Theorem 6. ([8]) Let 𝐴𝐴 ∈ ℂ𝑛𝑛×𝑛𝑛. Then the 
following statements are equivalent: 

(i) 𝐴𝐴 is a k-hypergeneralized 
projector. 

(ii) 𝐴𝐴𝑘𝑘+1 = 𝐴𝐴†𝐴𝐴. 
(iii) 𝐴𝐴𝑘𝑘+1 = 𝐴𝐴𝐴𝐴†. 
(iv) 𝐴𝐴𝑘𝑘+1𝐴𝐴† = 𝐴𝐴†. 
(v) 𝐴𝐴†𝐴𝐴𝑘𝑘+1 = 𝐴𝐴†. 
The next result implies that k-

hypergeneralized projectors can be 
characterized by some equalities involving 
the conjugate transpose matrix. 

Theorem 7. Let 𝐴𝐴 ∈ ℂ𝑛𝑛×𝑛𝑛. Then the 
following statements are equivalent: 

(i) 𝐴𝐴 is a k-hypergeneralized 
projector. 

(ii) 𝐴𝐴 = 𝐴𝐴𝑘𝑘+2, (𝐴𝐴𝑘𝑘+1)∗ = 𝐴𝐴𝑘𝑘+1. 
(iii) 𝐴𝐴 = 𝐴𝐴𝑘𝑘+2,𝐴𝐴𝐴𝐴† = 𝐴𝐴†𝐴𝐴. 
(iv) 𝐴𝐴 = 𝐴𝐴𝑘𝑘+2,𝐴𝐴†𝐴𝐴𝐴𝐴𝐴𝐴† = 𝐴𝐴𝐴𝐴†𝐴𝐴†𝐴𝐴. 
(v) 𝐴𝐴∗ = 𝐴𝐴𝑘𝑘+1𝐴𝐴∗. 
(vi) 𝐴𝐴∗ = 𝐴𝐴∗𝐴𝐴𝑘𝑘+1. 
(vii) 𝐴𝐴 = (𝐴𝐴∗)𝑘𝑘+1𝐴𝐴. 
(viii) 𝐴𝐴 = 𝐴𝐴(𝐴𝐴∗)𝑘𝑘+1. 
(ix) 𝐴𝐴 = 𝐴𝐴𝑘𝑘+2,𝐴𝐴† = 𝐴𝐴(𝐴𝐴∗)𝑘𝑘+1. 
(x) 𝐴𝐴 = 𝐴𝐴𝑘𝑘+2,𝐴𝐴† = (𝐴𝐴∗)𝑘𝑘+1𝐴𝐴. 
 
Proof. If 𝐴𝐴 is a k-hypergeneralized 

projector, then it commutes with 𝐴𝐴† and 
𝐴𝐴† = 𝐴𝐴𝑘𝑘. It is not difficult to verify that 
conditions (ii)-(x) hold. 
(ii) ⟹ (i) Suppose that 𝐴𝐴 = 𝐴𝐴𝑘𝑘+2 and 
(𝐴𝐴𝑘𝑘+1)∗ = 𝐴𝐴𝑘𝑘+1. Then we have  

𝐴𝐴𝐴𝐴𝑘𝑘𝐴𝐴 = 𝐴𝐴𝑘𝑘+2 = 𝐴𝐴, 
𝐴𝐴𝑘𝑘𝐴𝐴𝐴𝐴𝑘𝑘 = 𝐴𝐴𝑘𝑘+2𝐴𝐴𝑘𝑘−1 = 𝐴𝐴𝐴𝐴𝑘𝑘−1 = 𝐴𝐴𝑘𝑘, 
(𝐴𝐴𝐴𝐴𝑘𝑘)∗ = (𝐴𝐴𝑘𝑘+1)∗ = 𝐴𝐴𝑘𝑘+1 = 𝐴𝐴𝐴𝐴𝑘𝑘 , 
(𝐴𝐴𝑘𝑘𝐴𝐴)∗ = (𝐴𝐴𝑘𝑘+1)∗ = 𝐴𝐴𝑘𝑘+1 = 𝐴𝐴𝑘𝑘𝐴𝐴. 
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Hence, 𝐴𝐴† = 𝐴𝐴𝑘𝑘 , ie. 𝐴𝐴 is a hypergeneralized 
projector.  
(iii)⟹ (i) From 𝐴𝐴 = 𝐴𝐴𝑘𝑘+2 and 𝐴𝐴𝐴𝐴+ = 𝐴𝐴+𝐴𝐴, 
we obtained  

𝐴𝐴𝑘𝑘 = 𝐴𝐴𝐴𝐴𝑘𝑘−2𝐴𝐴
= (𝐴𝐴𝐴𝐴†𝐴𝐴)𝐴𝐴𝑘𝑘−2(𝐴𝐴𝐴𝐴†𝐴𝐴)
= 𝐴𝐴†𝐴𝐴𝑘𝑘+2𝐴𝐴† = 𝐴𝐴†𝐴𝐴𝐴𝐴† = 𝐴𝐴†. 

 
Thus, 𝐴𝐴 is a k-hypergeneralized projector. 
(iv) ⟹  (iii) The equalities 𝐴𝐴†𝐴𝐴𝐴𝐴𝐴𝐴† =
𝐴𝐴𝐴𝐴†𝐴𝐴†𝐴𝐴 and 𝐴𝐴𝑘𝑘+2 = 𝐴𝐴 give  
𝐴𝐴†𝐴𝐴 = 𝐴𝐴†𝐴𝐴𝑘𝑘+2 = 𝐴𝐴†𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘 =
𝐴𝐴†𝐴𝐴(𝐴𝐴𝐴𝐴†𝐴𝐴)𝐴𝐴𝑘𝑘 = (𝐴𝐴†𝐴𝐴𝐴𝐴𝐴𝐴†)𝐴𝐴𝐴𝐴𝑘𝑘 =
(𝐴𝐴𝐴𝐴†𝐴𝐴†𝐴𝐴)𝐴𝐴𝐴𝐴𝑘𝑘 = 𝐴𝐴𝐴𝐴†𝐴𝐴†(𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘) =
𝐴𝐴𝐴𝐴†𝐴𝐴†𝐴𝐴𝑘𝑘+2 = 𝐴𝐴𝐴𝐴†𝐴𝐴†𝐴𝐴.  
 
Similarly, we obtained 𝐴𝐴𝐴𝐴† = 𝐴𝐴𝐴𝐴†𝐴𝐴𝐴𝐴. 
Since, 𝐴𝐴 = 𝐴𝐴𝑘𝑘+2, we conclude that the 
condition (iii) holds. 
(v)⟹ (ii) Applying involution to the 
equality 𝐴𝐴∗ = 𝐴𝐴𝑘𝑘+1𝐴𝐴∗, we conclude that 𝐴𝐴 =
𝐴𝐴(𝐴𝐴𝑘𝑘+1)∗. Also, by (v), we get  
𝐴𝐴𝑘𝑘+1 = 𝐴𝐴𝑘𝑘𝐴𝐴 = 𝐴𝐴𝑘𝑘(𝐴𝐴∗)∗ = 𝐴𝐴𝑘𝑘(𝐴𝐴𝑘𝑘+1𝐴𝐴∗)∗ =
𝐴𝐴𝑘𝑘𝐴𝐴(𝐴𝐴𝑘𝑘+1)∗ = 𝐴𝐴𝑘𝑘+1𝐴𝐴∗(𝐴𝐴𝑘𝑘)∗ = 𝐴𝐴∗(𝐴𝐴𝑘𝑘)∗ =
(𝐴𝐴𝑘𝑘+1)∗.  
Now, 𝐴𝐴 = 𝐴𝐴(𝐴𝐴𝑘𝑘+1)∗ = 𝐴𝐴𝐴𝐴𝑘𝑘+1 = 𝐴𝐴𝑘𝑘+2. 
 
Therefore, the condition (ii) is satisfied. 
(vi)⟹  (ii) This part can be proved in a 
similar way as (v) ⇒ (ii). 
(vii) ⟹  (vi) Applying involution to the 
equality 𝐴𝐴 = (𝐴𝐴∗)𝑘𝑘+1𝐴𝐴, we get 𝐴𝐴∗ =
𝐴𝐴∗𝐴𝐴𝑘𝑘+1. Hence, the equality (vi) follows 
from the equality (vii). 
(viii) ⟹  (v) This follows similary as in the 
part (vii) ⟹  (vi). 
(ix) ⟹  (v) It is well-known that 𝐴𝐴∗ =
𝐴𝐴†𝐴𝐴𝐴𝐴∗ = 𝐴𝐴∗𝐴𝐴𝐴𝐴†. Now, if 𝐴𝐴† = 𝐴𝐴(𝐴𝐴∗)𝑘𝑘+1 
and 𝐴𝐴 = 𝐴𝐴𝑘𝑘+2 hold, then 
𝐴𝐴𝑘𝑘+2𝐴𝐴∗ = 𝐴𝐴𝑘𝑘+1𝐴𝐴𝐴𝐴∗ = 𝐴𝐴𝑘𝑘+1𝐴𝐴†𝐴𝐴𝐴𝐴∗

= 𝐴𝐴𝑘𝑘+1𝐴𝐴(𝐴𝐴∗)𝑘𝑘+1𝐴𝐴𝐴𝐴∗
= 𝐴𝐴𝑘𝑘+2(𝐴𝐴∗)𝑘𝑘+1𝐴𝐴𝐴𝐴∗
= 𝐴𝐴(𝐴𝐴∗)𝑘𝑘+1𝐴𝐴𝐴𝐴∗ = 𝐴𝐴†𝐴𝐴𝐴𝐴∗
= 𝐴𝐴∗. 

 
Thus, the condition (v) are proved. 
(x) ⟹  (vi) This implication can be obtained 
in the same manner as in (ix) ⟹  (v). 
 

HYPERGENERALIZED 
PROJECTORS 

If we specialize to k=2 in the previous 
similarly, we obtained results for 
hypergeneralized projectors. The following 
results are given in  [1] and [4]. 

Theorem 8. Let 𝐴𝐴 ∈ ℂ𝑛𝑛×𝑛𝑛. Then the 
following statements are equivalent: 

(i) 𝐴𝐴 is a hypergeneralized projector. 
(ii) 𝐴𝐴 is an EP matrix, 𝜎𝜎(𝐴𝐴) ⊆

𝜎𝜎2(𝐴𝐴) ∪ {0} and 𝐴𝐴 is 
diagonalizable. 

(iii) 𝐴𝐴 is an EP matrix and 𝐴𝐴4 = 𝐴𝐴.  
(iv) 𝐴𝐴 has the following representation 

𝐴𝐴 = 𝑈𝑈 �𝐾𝐾 0
0 0� 𝑈𝑈

∗, where 𝑈𝑈 ∈
ℂ𝑛𝑛×𝑛𝑛 is an unitary matrix and 𝐾𝐾 ∈
ℂ𝑟𝑟×𝑟𝑟 is a nonsingular matrix such 
that 𝐾𝐾3 = 𝐼𝐼𝑟𝑟 . 

Theorem 9. Let 𝐴𝐴 ∈ ℂ𝑛𝑛×𝑛𝑛. Then 𝐴𝐴 is a 
hypergeneralized projector if and only if 𝐴𝐴3 
is the orthogonal projector onto 𝑅𝑅(𝐴𝐴). 

Corollary 10. Let 𝐴𝐴 ∈ ℂ𝑛𝑛×𝑛𝑛 be a 
hypergeneralized projector. Then 𝑟𝑟(𝐴𝐴) =
𝑡𝑡𝑟𝑟(𝐴𝐴3). 

Theorem 11. Let 𝐴𝐴 ∈ ℂ𝑛𝑛×𝑛𝑛. Then the 
following statements are equivalent: 

(i) 𝐴𝐴 is a hypergeneralized projector. 
(ii) 𝐴𝐴∗ is a hypergeneralized 

projector. 
(iii) 𝐴𝐴† is a hypergeneralized 

projector. 
Notice that if 𝐴𝐴 is a k-hypergeneralized 

projector, then 𝐴𝐴† = 𝐴𝐴# = 𝐴𝐴𝑑𝑑 = 𝐴𝐴2 =
𝐴𝐴3𝑚𝑚+2,𝑚𝑚 ∈ ℕ. 

Theorem 12. Let 𝐴𝐴 ∈ ℂ𝑛𝑛×𝑛𝑛. Assume there 
exists 𝐵𝐵 ∈ ℂ𝑛𝑛×𝑛𝑛 such that 𝐵𝐵 is a 
hypergeneralized projector and 𝐴𝐴2 = 𝐴𝐴𝐵𝐵 or 
𝐴𝐴2 = 𝐵𝐵𝐴𝐴. Then 𝐴𝐴 is a hypergeneralized 
projector if and only if 𝐴𝐴 is an EP matrix. 

The following theorem is the corollary of 
Theorem 6 for k=2. It is given some 
necessary and sufficient conditions for 
characterizations of hypergeneralized 
projectors. 

Theorem 13. Let 𝐴𝐴 ∈ ℂ𝑛𝑛×𝑛𝑛. Then the 
following statements are equivalent: 

(i) 𝐴𝐴 is a hypergeneralized projector. 
(ii) 𝐴𝐴3 = 𝐴𝐴†𝐴𝐴. 
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(iii) 𝐴𝐴3 = 𝐴𝐴𝐴𝐴†. 
(iv) 𝐴𝐴3𝐴𝐴† = 𝐴𝐴†. 
(v) 𝐴𝐴†𝐴𝐴3 = 𝐴𝐴†. 
 
The next result implies that 

hypergeneralized projectors can be 
characterized by some equalities involving 
the conjugate transpose matrix. It is the 
corollary of Theorem 7 for k=2. 

 
Theorem 14. Let 𝐴𝐴 ∈ ℂ𝑛𝑛×𝑛𝑛. Then the 

following statements are equivalent: 
 
(i) 𝐴𝐴 is a hypergeneralized projector. 
(ii) 𝐴𝐴 = 𝐴𝐴4, (𝐴𝐴3)∗ = 𝐴𝐴3. 
(iii) 𝐴𝐴 = 𝐴𝐴4,𝐴𝐴𝐴𝐴† = 𝐴𝐴†𝐴𝐴. 
(iv) 𝐴𝐴 = 𝐴𝐴4,𝐴𝐴†𝐴𝐴𝐴𝐴𝐴𝐴† = 𝐴𝐴𝐴𝐴†𝐴𝐴†𝐴𝐴. 
(v) 𝐴𝐴∗ = 𝐴𝐴3𝐴𝐴∗. 
(vi) 𝐴𝐴∗ = 𝐴𝐴∗𝐴𝐴3. 
(vii) 𝐴𝐴 = (𝐴𝐴∗)3𝐴𝐴. 
(viii) 𝐴𝐴 = 𝐴𝐴(𝐴𝐴∗)3. 
(ix) 𝐴𝐴 = 𝐴𝐴4,𝐴𝐴† = 𝐴𝐴(𝐴𝐴∗)3. 
(x) 𝐴𝐴 = 𝐴𝐴4,𝐴𝐴† = (𝐴𝐴∗)3𝐴𝐴. 

 
CONCLUSION 

In this paper, we considered k-
hypergeneralized projectors and, especially 
hypergeneralized projectors. Precisely, we 
characterized k-hypergeneralized projectors 
and hypergenerealized projectors in terms of 
equations involving their adjoints, the EP 
matrix and different characterizations of the  
Moore-Penrose inverse. We conclude that 
neither the rank nor the properties of 
operator matrices are necessary for the 
characterization of k-hypergeneralized 
projectors and hypergenerealized projectors. 
The characterization of k-hypergeneralized 
projectors and, especially hypergeneralized 
projectors is significant because these types 
of matrices are an indispensable part of 
modern mathematics and science. 
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