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Abstract 
The Mean Value Theorems (MVTs) are recognized as foundational principles in differential calculus, yet 
comprehension of their proofs and applications is often challenged by students. Traditional linear teaching 
methods tend to isolate these theorems, resulting in a fragmented understanding. This study aims to develop a 
nonlinear teaching approach that highlights the interconnectedness of MVTs and other calculus concepts. 
Interactive teaching tools and visual aids are employed to enhance students' comprehension by illustrating the 
relationships between theorems. Significant improvements in engagement and understanding have been indicated 
by findings, as evidenced by an increased ability of students to apply theorems to real-world problems and to 
improve their proof-writing skills. Limitations related to diverse learning styles and student populations are 
acknowledged, while the practical implications of adopting nonlinear methods in calculus education are 
underscored. This study contributes original insights into pedagogical strategies for teaching MVTs, advocating 
for a holistic approach that fosters deeper mathematical understanding and retention. 

Keywords: mean value theorems, nonlinear teaching approach, calculus education, theorem integration, 
mathematical understanding. 

I. PRELIMINARIES 
The Mean Value Theorems (MVTs) are 

foundational principles in differential 
calculus, crucial for linking the derivative of 
a function to its behavior over an interval. 
Despite their importance, students often face 
significant challenges in understanding the 
proofs and applications of these theorems. 
The traditional linear approach to teaching 
MVTs, where theorems are introduced 
sequentially without emphasizing their 
interconnections, often fails to address these 
comprehension issues effectively. 

Existing solutions to this educational 
challenge include various teaching strategies 
that focus on formal proofs, geometric 
interpretations, and applications in real-
world problems [1, 2, 3]. For example, 
methods such as visual aids, multimedia 
tools, and interactive examples have been 
explored to enhance students' grasp of 
MVTs [4]. However, these approaches retain 
a linear structure, limiting students' 

understanding of the broader mathematical 
context and interrelationships among 
theorems. 

A nonlinear teaching approach, by 
emphasizing the interconnectedness of 
MVTs and their relationships with other 
calculus concepts, shows promise. This 
method moves beyond rote memorization to 
foster a deeper understanding of how 
different theorems complement each other 
and contribute to a holistic view of calculus. 

The main limitation of current teaching 
practices is their tendency to isolate each 
theorem, potentially leading to a fragmented 
understanding of calculus. By focusing on 
individual proofs and applications, students 
may struggle to see the overall framework 
and the integrative nature of these theorems. 

This study aims to address this limitation 
by proposing a nonlinear approach to 
teaching MVTs. The expected outcome is to 
enhance students' conceptual understanding 
and problem-solving skills by illustrating 
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how various MVTs interrelate. This 
approach is anticipated to provide a more 
cohesive and engaging learning experience, 
preparing students to tackle complicated 
calculus problems with a better analytical 
toolkit. 

Duque-Marín et al have highlighted the 
great difficulty students have experienced in 
understanding the derivative, a problem 
compounded when dealing with the MVT 
[5]. They have proposed that this difficulty 
may be due to a disconnection between the 
geometric and analytical interpretations of 
the MVT. They have used the action-
process-object-scheme (APOE) theory to 
develop two genetic decompositions – 
graphical and analytical paths – to help 
overcome these comprehension challenges. 

According to Sealey et al examples and 
visual illustrations can help greatly in 
understanding these theorems [6]. 
Insufficient use of such methods in teaching 
can make the learning process difficult. 

Kolahdouz et al have presented students' 
difficulties in comprehending mathematical 
proofs, specifically of the Cauchy 
Generalized Mean Value Theorem [7]. The 
study is built on research into students’ 
comprehension involving two main aspects: 
students’ understanding of relationships 
between the statements within the proof of 
the theorem, and connections with other 
related theorems. 

Dave Ruch has explained the Mean Value 
Theorem, Roll’s theorem, and Cauchy’s 
Mean Value Theorem, including their 
formal statements, proofs, and geometric 
interpretations [8]. The author emphasizes 
the applications of these theorems in 
understanding the behavior of functions and 
also presents solutions of practical problems. 

J. Li has analyzed the proof and 
application of Lagrange’s Mean Value 
Theorem within higher mathematics 
education [9]. The paper highlights the 
importance of mathematical principles in 
enhancing both functionality and aesthetics 
in digital and print media design. 

Georges Sarafopoulos has offered an 
alternative method for teaching MVTs by 

integrating visual facilities, and interactive 
examples and focusing on students’ 
conceptual understanding through practical 
activities and examples [10]. 

 
II. INTRODUCTION 

Linear (classical) teaching of MVTs is a 
systematic approach that involves 
consecutive presenting the theorems in a 
logical order, ensuring that each concept 
forms on the previous one. 

Our point of view is that nonlinear 
teaching of MVTs aims to create a better and 
more interconnected understanding of 
mathematical concepts. Nonlinear teaching 
emphasizes deep comprehension over rote 
memorization and highlights the useful 
relationship between different theorems. 

The basic aims of our research include:  
• forming a solid foundation to establish a 

strong understanding of foundational 
calculus concepts such as continuity and 
differentiability; 

•  enhancing a conceptual understanding 
to move beyond routine to foster a deeper 
grasp of theoretical underpinning and 
applications of the theorems; 

• encouraging mastery to prompt 
mastership of fundamental concepts before 
moving on to more advanced topics; 

• facilitating connections to teach 
students to make connections between 
different mathematical concepts and 
overthink the broader implication of MVTs; 

• interactive and engaging learning by 
using dynamic teaching tools such as 
graphing software and visualizations to 
illustrate the geometric aspect of the 
theorems; 

• improving the mathematical rigor and 
proof skills to ensure students’ 
understanding of formal statements and 
proofs of MVTs. 
 
III. LINEAR TEACHING APPROACH 

This article discusses the classical mean 
value theorems, which are well-known in the 
mathematical literature. For the reader's 
convenience and to introduce additional  
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notation, we will reformulate them here. 
 
Theorem 1. The Weierstrass theorem 
(WT), (Weierstrass, 1860). Let 𝑓𝑓(𝑥𝑥) be a 
continuous function defined on a closed 
interval [𝑎𝑎, 𝑏𝑏]  for all 𝑥𝑥 ∈ [𝑎𝑎, 𝑏𝑏], then 𝑓𝑓(𝑥𝑥) 
attains both its global minimum and 
maximum in [𝑎𝑎, 𝑏𝑏], i.e. there exist points 𝜇𝜇 
and 𝜈𝜈  in [𝑎𝑎, 𝑏𝑏] such that the following 
statement be true: 𝑓𝑓(𝜇𝜇) ≤ 𝑓𝑓(𝑥𝑥) ≤ 𝑓𝑓(𝜈𝜈).  
 
Theorem 2. Rolle’s theorem (RT), (Rolle, 
1691). Let a function 𝑓𝑓(𝑥𝑥) be: 

• continuous on a closed interval [𝑎𝑎, 𝑏𝑏]; 
• differentiable in each inner points of 

(𝑎𝑎, 𝑏𝑏); 
• 𝑓𝑓(𝑎𝑎) = 𝑓𝑓(𝑏𝑏). 
Then there exists a point 𝜉𝜉 in (𝑎𝑎, 𝑏𝑏) such 

that 𝑓𝑓′(𝜉𝜉) = 0. 
 
Theorem 3. Cauchy’s mean value 
theorem (CMVT), (Cauchy, 1821). Let 
functions 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) be: 

• continuous on the closed interval [𝑎𝑎, 𝑏𝑏]; 
• differentiable on the open 

interval (𝑎𝑎, 𝑏𝑏); 
• 𝑔𝑔′(𝑥𝑥) ≠ 0 for all 𝑥𝑥 in the open 

interval (𝑎𝑎, 𝑏𝑏). 
Then there exists a point 𝜉𝜉 in (𝑎𝑎, 𝑏𝑏) such 

that 
 

𝑓𝑓′(𝜉𝜉)
𝑔𝑔′(𝜉𝜉)

=
𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎)
𝑔𝑔(𝑏𝑏) − 𝑔𝑔(𝑎𝑎) 

 (1) 

 
Theorem 4. Lagrange’s mean value 
theorem (LMVT), (Lagrange, 1797). Let a 
function 𝑓𝑓(𝑥𝑥) be: 

• continuous on the closed interval [𝑎𝑎, 𝑏𝑏]; 
• differentiable on the open 

interval (𝑎𝑎, 𝑏𝑏). 
Then there exists a point 𝜉𝜉 in (𝑎𝑎, 𝑏𝑏) such 

that  
 

𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎) = 𝑓𝑓′(𝜉𝜉)(𝑏𝑏 − 𝑎𝑎). 
 
Theorem 5. The mean value theorem for 
integrals (MVTI), (the 19th century). Let a 
function 𝑓𝑓(𝑥𝑥) be continuous on the closed 

interval [𝑎𝑎, 𝑏𝑏], then there exists a point 𝜉𝜉 on 
the open interval  (𝑎𝑎, 𝑏𝑏) such that 
 

�𝑓𝑓(𝑥𝑥)
𝑏𝑏

𝑎𝑎

𝑑𝑑𝑥𝑥 = 𝑓𝑓(𝜉𝜉)(𝑏𝑏 − 𝑎𝑎).                         

 
Theorem 6. Cauchy’s mean value 
theorem involving three functions 
(CMVTITF), (Cauchy, 1823). Let 𝑘𝑘1,𝑘𝑘2 and 
𝑘𝑘3 be three real numbers such that 𝑘𝑘1 +
𝑘𝑘2 + 𝑘𝑘3 = 0. If 𝑓𝑓(𝑥𝑥), 𝑔𝑔(𝑥𝑥) and ℎ(𝑥𝑥) are 
three functions satisfying the following 
conditions: 

• continuous on the closed interval [𝑎𝑎, 𝑏𝑏]; 
• differentiable on the open 

interval (𝑎𝑎, 𝑏𝑏); 
• 𝑓𝑓(𝑎𝑎) ≠ 𝑓𝑓(𝑏𝑏),𝑔𝑔(𝑎𝑎) ≠ 𝑔𝑔(𝑏𝑏) and ℎ(𝑎𝑎) ≠

ℎ(𝑏𝑏). 
Then there exists a point 𝜉𝜉 in (𝑎𝑎, 𝑏𝑏) such 
that  
 

𝑘𝑘1
𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎)𝑓𝑓

′(𝜉𝜉)

+
𝑘𝑘2

𝑔𝑔(𝑏𝑏) − 𝑔𝑔(𝑎𝑎)𝑔𝑔
′(𝜉𝜉) 

 

(2) 
 

+
𝑘𝑘3

ℎ(𝑏𝑏) − ℎ(𝑎𝑎)ℎ
′(𝜉𝜉) = 0 

 
Theorem 7. Cauchy’s mean value 
theorem involving n functions 
(CMVTINF). Let 𝑘𝑘1,𝑘𝑘2, … , 𝑘𝑘𝑛𝑛 be 𝑛𝑛 real 
numbers such that 𝑘𝑘1 +  𝑘𝑘2 +  … +  𝑘𝑘𝑛𝑛 = 0. 
If 𝑓𝑓1(𝑥𝑥),𝑓𝑓2(𝑥𝑥), … ,𝑓𝑓𝑛𝑛(𝑥𝑥) are 𝑛𝑛 functions: 

• continuous on the closed interval [𝑎𝑎, 𝑏𝑏]; 
• differentiable on the open 

interval (𝑎𝑎, 𝑏𝑏); 
• 𝑓𝑓𝑖𝑖(𝑎𝑎) ≠ 𝑓𝑓𝑖𝑖(𝑏𝑏) for 𝑖𝑖 = 1, 2, … ,𝑛𝑛. 
Then there exists a point 𝜉𝜉 in (𝑎𝑎, 𝑏𝑏) such 

that  
 

𝑘𝑘1
𝑓𝑓1(𝑏𝑏) − 𝑓𝑓1(𝑎𝑎)𝑓𝑓1

′(𝜉𝜉) +
𝑘𝑘2

𝑓𝑓2(𝑏𝑏) − 𝑓𝑓2(𝑎𝑎)𝑓𝑓2
′(𝜉𝜉) 

+⋯+
𝑘𝑘𝑛𝑛

𝑓𝑓𝑛𝑛(𝑏𝑏) − 𝑓𝑓𝑛𝑛(𝑎𝑎)𝑓𝑓𝑛𝑛
′(𝜉𝜉) = 0. 
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IV. NONLINEAR TEACHING 
APPROACH 

In our proposed approach, we enhance 
the traditional teaching of classic theorems 
by emphasizing the relations between them. 
This method aims to deepen students' 
understanding by illustrating how these 
theorems interrelate and complement each 
other within the context of calculus. By 
highlighting these relationships, students 
grasp the individual significance of each 
theorem. They also gain insights into how 
these theorems collectively contribute to a 
more comprehensive understanding of 
calculus concepts and applications. This 
approach fosters a more holistic and 
interconnected view of calculus, preparing 
students to deal with complicated problems 
with a broader analytical toolkit. 
 
Theorem 8. Lagrange’s mean value theorem 
follows from the mean value theorem for 
integrals. 
Proof. We use an integral representation of 
the function 𝑓𝑓(𝑥𝑥) = ∫ 𝑓𝑓′(𝑡𝑡)𝑑𝑑𝑡𝑡𝑥𝑥

𝑎𝑎 + 𝑓𝑓(𝑎𝑎).  
Therefore 
 

�𝑓𝑓′(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑏𝑏

𝑎𝑎

= 𝑓𝑓(𝑡𝑡) �𝑏𝑏𝑎𝑎 =𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎).    (3) 

 
Applying MVTI to the derivate 

function 𝑓𝑓′(𝑥𝑥) leads to 
 

     �𝑓𝑓′(𝑥𝑥)
𝑏𝑏

𝑎𝑎

𝑑𝑑𝑥𝑥 = 𝑓𝑓′(𝜉𝜉)(𝑏𝑏 − 𝑎𝑎) 

 
It remains to apply (3) in order to 

complete the proof 
 

�𝑓𝑓′(𝑥𝑥)
𝑏𝑏

𝑎𝑎

𝑑𝑑𝑥𝑥 = 𝑓𝑓(𝑥𝑥) �𝑏𝑏𝑎𝑎 = 𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎) 

 
Thus 
 
 𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎) = 𝑓𝑓′(𝜉𝜉)(𝑏𝑏 − 𝑎𝑎).∎ 
 

This is exactly the statement of LMVT. 
 
Theorem 9. The mean value theorem for 
integrals follows from Lagrange’s mean 
value theorem. 
Proof. We define an auxiliary function 
 

𝐹𝐹(𝑥𝑥) = ∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡𝑥𝑥
𝑎𝑎 . 

The function 𝐹𝐹(𝑥𝑥) is continuous on the 
closed interval [𝑎𝑎, 𝑏𝑏] and differentiable on 
(𝑎𝑎, 𝑏𝑏), and according to the fundamental 
theorem of calculus the derivative 𝐹𝐹′(𝑥𝑥) =
𝑓𝑓(𝑥𝑥). 

Applying LMVT to 𝐹𝐹(𝑥𝑥) on [𝑎𝑎, 𝑏𝑏], it is 
stated there exists a point 𝜉𝜉 in (𝑎𝑎, 𝑏𝑏) such 
that 

 
𝐹𝐹(𝑏𝑏) − 𝐹𝐹(𝑎𝑎) =  𝐹𝐹′(𝜉𝜉)(𝑏𝑏 − 𝑎𝑎). 

 
Since  
 
𝐹𝐹(𝑏𝑏) = ∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡𝑏𝑏

𝑎𝑎 ,  
𝐹𝐹(𝑎𝑎) = ∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡𝑎𝑎

𝑎𝑎  and 
 𝐹𝐹′(𝜉𝜉) = 𝑓𝑓(𝜉𝜉),  
 
we get 
 
∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡𝑏𝑏
𝑎𝑎 − ∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡 =𝑎𝑎

𝑎𝑎 𝑓𝑓(𝜉𝜉)(𝑏𝑏 − 𝑎𝑎). 
 
Thus 
 
 ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏
𝑎𝑎 = 𝑓𝑓(𝜉𝜉)(𝑏𝑏 − 𝑎𝑎). ∎ 

 
Theorem 10. Fermat’s theorem (FT). Let a 
function 𝑓𝑓(𝑥𝑥) is defined on the open 
interval (𝑎𝑎, 𝑏𝑏). If 𝑓𝑓(𝑥𝑥) has a local minimum 
or a local maximum at a point 𝜉𝜉 in (𝑎𝑎, 𝑏𝑏), 
then the derivate 𝑓𝑓′(𝑥𝑥) = 0, or it do not 
exist. 

Connecting WT to CMVT involves 
understanding the fundamental properties of 
continuous functions on closed intervals and 
using these properties to establish the 
conditions stated in CMVT. 
We apply FT to prove the next theorem. 
 
Theorem 11. Cauchy’s mean value theorem 
follows from the Weierstrass theorem 
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Proof. We define an auxiliary function 
 

ℎ(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) −
𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎)
𝑔𝑔(𝑏𝑏) − 𝑔𝑔(𝑎𝑎)𝑔𝑔

(𝑥𝑥). 

 
Since 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) are continuous on a 

closed interval [𝑎𝑎, 𝑏𝑏], and differentiable 
on (𝑎𝑎, 𝑏𝑏), the function ℎ(𝑥𝑥) is also 
continuous on [𝑎𝑎, 𝑏𝑏], and differentiable on 
(𝑎𝑎, 𝑏𝑏). According to WT the function ℎ(𝑥𝑥) 
attains a minimum and a maximum in [𝑎𝑎, 𝑏𝑏]. 

Let 𝑥𝑥0 be an extreme point (minimum or 
maximum). If 𝑥𝑥0 is attained at the endpoints 
𝑎𝑎 or 𝑏𝑏, we check if ℎ(𝑎𝑎) = ℎ(𝑏𝑏). 

We calculate ℎ(𝑎𝑎) and ℎ(𝑏𝑏) 
 

ℎ(𝑎𝑎) = 𝑓𝑓(𝑎𝑎) −
𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎)
𝑔𝑔(𝑏𝑏) − 𝑔𝑔(𝑎𝑎)𝑔𝑔

(𝑎𝑎) 

 

ℎ(𝑏𝑏) = 𝑓𝑓(𝑏𝑏) −
𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎)
𝑔𝑔(𝑏𝑏) − 𝑔𝑔(𝑎𝑎)𝑔𝑔

(𝑏𝑏). 

 
Simplifying ℎ(𝑎𝑎) and ℎ(𝑏𝑏), we get 

ℎ(𝑏𝑏) − ℎ(𝑎𝑎) = 0. 
If 𝑥𝑥0 is an inner point of (𝑎𝑎, 𝑏𝑏), then 

according to FT, and since the function ℎ(𝑥𝑥) 
has an extremum at a point 𝑥𝑥0, we have 
ℎ′(𝑥𝑥0) = 0. 

We differentiate ℎ(𝑥𝑥) with respect to 𝑥𝑥 
 

ℎ′(𝑥𝑥) = 𝑓𝑓′(𝑥𝑥) −
𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎)
𝑔𝑔(𝑏𝑏) − 𝑔𝑔(𝑎𝑎)𝑔𝑔

′(𝑥𝑥). 

 
Setting ℎ′(𝑥𝑥0) = 0, we have 
 

ℎ′(𝑥𝑥0) = 𝑓𝑓′(𝑥𝑥0) −
𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎)
𝑔𝑔(𝑏𝑏) − 𝑔𝑔(𝑎𝑎)𝑔𝑔′

(𝑥𝑥0)

= 0. 
Rearranging the latter equality, we get 
 

𝑓𝑓′(𝑥𝑥0)
𝑔𝑔′(𝑥𝑥0) =

𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎)
𝑔𝑔(𝑏𝑏) − 𝑔𝑔(𝑎𝑎) . 

 
Therefore, there exists a point  𝜉𝜉 = 𝑥𝑥0 on 

the open interval (𝑎𝑎, 𝑏𝑏) such that 
 

𝑓𝑓′( 𝜉𝜉)
𝑔𝑔′( 𝜉𝜉) =

𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎)
𝑔𝑔(𝑏𝑏) − 𝑔𝑔(𝑎𝑎) .∎ 

The relation between WT and RT is 
classic and fundamental. WT guarantees that 
a function has global maximum and 
minimum values on a closed interval, while 
RT is used to locate a point where the 
function derivate is equal to zero. 
Connecting RT to CMVT is also a classic 
topic in mathematical analysis. CMVT 
applies to any two functions satisfying the 
required conditions, while RT is specifically 
about a single function that attains the same 
value at the endpoints of an interval. 
 
Theorem 12. Roll’s theorem follows from 
Lagrange’s mean value theorem  
Proof. If in LMVT, the values of the function 
𝑓𝑓(𝑥𝑥) at the endpoints of [𝑎𝑎, 𝑏𝑏] are equal, 
i.e. 𝑓𝑓(𝑎𝑎) = 𝑓𝑓(𝑏𝑏), then the average rate of 
change of the function is equal to zero 
 

𝑓𝑓′( 𝜉𝜉) =
𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎)

𝑏𝑏 − 𝑎𝑎
=

0
𝑏𝑏 − 𝑎𝑎

. 
 
We get 𝑓𝑓′( 𝜉𝜉) = 0.   
Thus, when 𝑓𝑓(𝑎𝑎) = 𝑓𝑓(𝑏𝑏), according to 

LMVT, there exists a point 𝜉𝜉 in (𝑎𝑎, 𝑏𝑏), such 
that 𝑓𝑓′(𝜉𝜉) = 0.∎ 
 
V. CONCLUSION 

Interactive, visually-driven teaching 
methods significantly enhance students' 
conceptual understanding of the Mean Value 
Theorems. By focusing on these theorems' 
geometric and real-world applications, 
students are better equipped to apply them in 
problem-solving scenarios. Additionally, 
nonlinear approaches that emphasize 
connections between different theorems 
foster greater engagement and improve 
students' ability to write formal proofs. 
However, the study acknowledges the need 
for retention and the effectiveness of these 
methods across different student 
populations. 
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