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Abstract 
In recent years, there has been a growing interest in developing new metaheuristic algorithms for optimizing 

multiple-problems. Due to the stochastic nature of algorithms, their solutions and behaviors are different for 
different single-problems contained in one multiple-problem. Therefore, in many cases, it is difficult to choose 
the best algorithm that will solve a specific multiple-problem. This paper uses the multi-criteria decision-making 
(MCDM) method to rank the proposed algorithms for solving concrete multiple-problem. We take the multi-case 
Combined economic emission (CEED) problem as a case study. Specifically, we rank five proposed algorithms 
according to different performance measures using the TOPSIS method to solve four CEED problem cases. 
Additionally, the obtained results were validated using the EDAS method, confirming the final rank of the 
analyzed algorithms. 

Keywords: metaheuristics, CEED, MCDM methods, TOPSIS method, EDAS method. 

INTRODUCTION 
    In recent years, a large number of 
metaheuristic algorithms have been 
proposed to solve various optimization 
problems. These problems are often 
multiple, i.e. they contain several sub-
problems represented by different objective 
functions, so the proposed algorithm can be 
good for some sub-problems but slightly 
weaker for others. This is consistent with 
the "No free lunch" theorem [1], which 
shows that no algorithm is better than 
others for any problem. Due to the 
stochastic nature of metaheuristic 
algorithms, performance measures such as 
best and mean value, standard deviation, 
error rate, computation time, convergence, 
etc., are used to evaluate their efficiency 
and effectiveness. These performance 
measures differ for different algorithms and 
problems, so it is often difficult to evaluate 
which algorithm from the many proposed in 

the literature is the most acceptable for 
solving a certain multiple-problem. In this 
paper, we propose multi-criteria decision-
making (MCDM) methods for selecting the 
most acceptable algorithm from the set of 
proposed ones for solving a multiple-
problem. As a case study, we took the 
multiple-problem Combined economic and 
emission dispatch (CEED) problem, for the 
solution of which a large number of 
algorithms have been proposed in the 
literature. The MCDM methods we apply 
are the TOPSIS and EDAS methods. The 
algorithms we evaluate are AWDO [2], FA 
[3], MSA [4], PSOGSA [5], and PSO [6].  

TESTING THE ALGORITHMS 
We test algorithms on a standard IEEE 

30-bus 6-generator system with a total load 
demand of 283.4 MW. CEED is the 
adjustment of the output power of several 
generators in a thermal power plant to  
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minimize fuel cost and/or emission of toxic 
gases by satisfying the constraints in the 
system. The most common objective 
functions (f) in this optimization are the 
following: 
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where  f1 is an objective function that 
minimizes the sum of fuel costs and 
emissions in the power plant, 
simultaneously;  f2 is a function that 
minimizes the sum of fuel costs taking into 
account the valve point effect in the thermal 
power plant;  f3 is a function that minimizes 
the total emission in the power plant; G is 
the total number of generators under 
consideration;  f4 is an objective function 
that minimizes the sum of fuel costs and 
emissions in the power plant, 
simultaneously taking into account the 
valve point effect; gP  (MW) is the output 

power of the generator g; min
gP  (MW) is the 

minimum power of the generator g;  dg and 
eg are the coefficients of valve point effect 
in the thermal station; γ is the scaling 
factor; ( )gF P and ( )gE P  are functions of 
fuel cost ($/h) and emission (t/h) 
respectively, dependent on the output 
power of the generator g. The forms of 
these functions are as follows: 

 
( ) 2

g g g g g g gF P a b P c P= + +          (2) 
 
( ) ( )2 expg g g g g g g g g gE P P P Pα β η ξ λ= + + + (3) 
 
 
 
 
 
 

where ga  , gb  and gc are the fuel cost 
coefficients of the generator g; gα , gβ , gη , 

gξ and gλ are the emission coefficients of 
the generator g. The constraints we applied 
in solving this problem are:  
• the constraint of the generator’s power, 

 
min max

g g gP P P≤ ≤                                  (4) 
  

• the power balance in the system, 
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∈
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where min

gP  and max
gP  are the minimum and 

maximum power of generator g, 
respectively; PD is the total power of the 
consumer, Ploss  is the power loss in the 
transmission system. In order to maintain 
the balance condition during the 
calculation, the power of one of the 
generators (slack generator) is calculated 
from (5) at each iteration. Power loss in the 
transmission system, Ploss, is expressed 
from the output powers of generators 
according to Kron’s formula, as follows: 

 
0 00loss g gj j g gg G j G g G
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where Bgj and B0g are the coefficients of the 
B-loss matrix, and B00 is a constant. 
Coefficients of fuel cost, emission and B-
loss matrices are taken in this paper from 
[7]. The algorithms are implemented in 
MATLAB R2017a computational 
environment and run on 1.3 GHz, with 8.0 
GB RAM. The best results of the 
simulations are obtained after 30 runs. The 
general structure of algorithms for solving 
the CEED problem consists of the 
following steps: 
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Step 0: 
Preparation 

Choose the number of search agents (solution candidate) N > 2 in the search space, the 
coefficients of the algorithm, the maximum number of iterations tmax and the fitness 
function f (x) from (1). Set the iteration counter to t = 0. 

Step 1: 
Initialization 
 

Generate a random population of N search agents. The initial positions of each agent 
(0)
ix  are randomly selected between minimum and maximum values of the control 

variables (i.e., power outputs of generators). Calculate the power of the slack generator 
for each agent. Calculate: 

( ){ }(0)min , 1, ..., , arg .if f x i N x f∗ ∗ ∗= = =   

Step 2:  

Update ( )t
ix   

 

Generate a new population of agents ( )1t
ix ,+

 by applying an algorithmic operator to 
each agent from the current population. Calculate the power of the slack generator. 
Calculate: ( )( ){ }1 1t

min if min f x , i , ..., N .+= =   

If  min ,f f ∗<  put minf f∗ =  and  minarg .x f∗ =  
Step 3:  
End  

If  t = tmax, stop the algorithm. Otherwise, set t = t + 1 and return to step 2. 
Adopt the solution x ⃰  as the final approximate solution to the problem. 

 
The coefficients of the algorithms are 
shown in Table 1.

Table 1. Coefficients of the algorithms applied to the test system. 
AWDO FA MSA PSOGSA PSO 
N tmax α ,g, RT, c  N  tmax  α  

minβ   γ   N  tmax  Nc  N  tmax  G0  α   C1  C2  N  tmax  C1  C2 

50 200 optimized  50  200 0.25  0.20 1  50  200   6  50  200  1  20  0.5  1.5  50  200  0.5  1.5 
 
Table 2 shows the minimum, mean, 
standard deviation, error rate, convergence, 
and computation time values for cases of 
appliing AWDO, FA, MSA, PSOGSA, and 
PSO to the test system are shown in Table 
2. From the results, it is evident that the 
minimum values of the fuel cost and 
emission, and fuel cost and emission 
simultaneously,  are the same or close to 
each other for all four algorithms. Other 
compared values are close to each other or 
significantly different. In the next chapter, 
algorithms are ranked based on their 
performance measures across different 
functions. 
 
RANKING ALGORITHMS USING 
THE TOPSIS METHOD 
 

Based on the findings from the previous 
phase of the research, it can be concluded 
that there was no significant difference in 
the performance of the five tested 
algorithms (AWDO, FA, MSA, PSOGSA, 
PSO) when addressing CEED problems 
across all functions (variants) 
simultaneously. Consequently, alongside 

evaluating the metaheuristic algorithms, a 
multi-criteria decision-making method was 
employed to rank the algorithms based on 
their performance across different 
functions. The top-ranked algorithm for 
solving the CEED problem was identified 
by considering various factors, including 
the best results, standard deviation (SD), 
mean value, error rates, computation time, 
and convergence across the individual 
problem variants. The TOPSIS method 
was utilized to find the best solution.  
The Technique for Order Preference by 
Similarity to Ideal Solution (TOPSIS) 
emerged in the 1980s as a method for 
multi-criteria decision-making. It identifies 
the best alternative by measuring the 
shortest Euclidean distance to the ideal 
solution while maximizing the distance 
from the negative ideal solution [8], [9], 
[10], [11]. Alternatives are ranked based 
on an overall index calculated from the 
distances to the perfect solutions. This 
MCDM method is widely employed to 
address various decision problems [12], [13], 
[14]. The initial data for a multicriteria 
problem can be found in Table 2. 
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Table 2. The initial data for ranking tested algorithms 
Criteria → f1 f2 f3 f4 f1 f2 f3 f4 

Min/Max min min min min min min min min 

Weight 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 
↓Alternatives / 
Scenario→          Best SD 

AWDO  815.82291063 635.92045215 0.194178511 861.70746581 0.039554634 6.861898931    2.01239E-14   0.522555834 

FA  815.82291064 635.85555344 0.194178511 861.70728467 1.69099E-07 4.142287984    1.27759E-09   0.788621003 

MSA  815.82291133 635.88017914 0.194178512 861.70997504 4.20478E-06 10.48924953    2.11788E-09   0.684718756 

PSOGSA  815.82291063 635.82011047 0.194178511 861.70505749 15.79001237 15.57652466    0.007090474   24.02610905 

PSO  815.82291063 635.90446527 0.194178511 861.70280274 6.658129574 8.401397207    0.002638085   7.55054294 

↓Alternatives / 
Scenario→          Mean value Error rate 

AWDO 815.83013229 640.44711163 0.194178511 862.03819713 0.000885199 0.727721738 3.7164E-12 0.038922281 

FA 815.82291080 637.95788593 0.194178511 862.26358454 2.074E-08 0.336223316 1.71104E-07 0.06507833 

MSA 815.82291765 645.42733709 0.194178514 862.56767428 8.60208E-07 1.510997601 1.42011E-06 0.100367729 

PSOGSA 832.13481841 661.44054499 0.204305302 891.78349992 1.999442228 4.029509934 5.215196531 3.490843604 

PSO 817.99498404 648.73761870 0.194660157 866.21645830 0.266243248 2.031629391 0.248043051 0.52380653 

↓Alternatives / 
Scenario→          Computation time Convergence 

AWDO 3.0762 4.0517 3.5368 3.5821 68 171 37 39 

FA 4.22280 2.97690 2.49058 2.53068 61 153 37 139 

MSA 3.98072 3.19908 4.74918 2.86923 127 178 77 199 

PSOGSA 1.6691 1.5170 1.6088 1.6975 28 52 29 46 

PSO 3.49220 3.05458 4.24198 3.28438 43 156 51 60 

 
The best-ranked algorithm applied in four 
different functions according to the best 
results, computation time and convergence 
is PSOGSA, followed by the FA algorithm 
in the case of SD and mean value. The 
obtained results are shown in the Table 3.  
 
Table 3. TOPSIS results of the complete ranking of the 
analyzed algorithms 
 Best SD Mean value 
 Ci Rank Ci Rank Ci Rank 
AWDO 0,44790 4 0,86988 2 0,94070 2 
FA 0,62500 2 0,99005 1 0,99638 1 
MSA 0,21743 5 0,72108 3 0,83152 3 
PSOGSA 0,83179 1 0,00000 5 0,00000 5 
PSO 0,61169 3 0,63144 4 0,73194 4 
 Error rate Time Convergence 
 Ci Rank Ci Rank Ci Rank 
AWDO 0,96196 1 0,26780 3 0,47776 3 
FA 0,96009 2 0,42400 2 0,44803 4 
MSA 0,82831 3 0,24167 5 0,0000 5 
PSOGSA 0,00000 5 1,00000 1 0,98200 1 
PSO 0,74008 4 0,26592 4 0,49360 2 
 
Additionally, the validation of obtained 
results was achieved using the EDAS 
method. This multi-criteria decision-
making method is used very often in 
comparative analysis with the TOPSIS 
method, as evidenced by numerous studies 

[15], [16]. The final rank of the analyzed 
algorithms using the EDAS method is 
shown in Table 4. 

Table 4. EDAS results of the complete ranking of the 
analyzed algorithms 
 Best SD Mean value 
 Si Rank Si Rank Si Rank 

AWDO 0,00001 4 0,470102 4 0,451004 3 
FA 0,18032 2 0,598036 2 0,662027 1 
MSA 0,00000 5 0,890626 1 0,655629 2 
PSOGSA 0,97600 1 0,488662 3 0,317656 4 
PSO 0,02400 3 0,011338 5 0,182344 5 
 Error rate Time  Convergence 
 Si Rank Si Rank Si Rank 
AWDO 0,475452 3 0,017072 3 0,189223 2 
FA 0,636795 2 0,091329 2 0,063378 4 
MSA 0,648713 1 0 4 0 5 
PSOGSA 0,285508 4 1 1 0,828385 1 
PSO 0,214492 5 0 4 0,171615 3 

 
The results obtained by the ranked 
algorithms using the EDAS method 
showed consistency in the obtained ranks 
of different performance measures 
compared to the TOPSIS method results. 
Namely, the application of the EDAS 
method indicates that the best-ranked 
algorithm is PSOGSA (according to the 
best results, computation time, and 
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convergence), which points out that the 
validity of the obtained results was 
achieved. 
 
CONCLUSION 

A large number of metaheuristic 
algorithms for solving certain optimization 
problems have been proposed in the 
published literature. Problems that are 
solved using these algorithms can be 
multiple-problems, i.e., they can have 
more variants and contain more sub-
problems. Therefore, according to the "No 
free lunch" theorem, one algorithm may 
not be the best for solving all variants of 
the problem for which it was proposed. 
Some of the proposed algorithms are better 
than others when solving one number of 
variants, and some when solving other 
variants. In this paper, the MCDM method 
TOPSIS is proposed, by means of which 
among the proposed algorithms for solving 
a multiple-problem, one can be selected as 
the most acceptable. Also, using this 
method, algorithms can be ranked 
according to the performance measure that 
is chosen as the ranking criterion. The 
proposed procedure can help decision-
makers to choose the most acceptable 
algorithm for solving their problem or a 
part of that problem from the multitude of 
proposed algorithms. 
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