
EXPLORING RAG IN MEDICAL QUESTION ANSWERING:
INTEGRATING LLMS AND VECTOR DATABASES

Matija Špeletić1*, Stevica Cvetković2, Milan Protić3, Saša V. Nikolić4

1,2,4 University of Niš, Faculty of Electronic Engineering, Niš, Serbia;
3 Academy of Technical-Educational Vocational Studies, Niš, Serbia;

*Corresponding author: matija.speletic@elfak.ni.ac.rs

Abstract
This paper presents the design, implementation, and evaluation of a Retrieval-Augmented Generation (RAG)

system for medical question answering. The proposed system integrates a state-of-the-art large language model
(LLM) with a vector database powered by Neo4j for fast and efficient information retrieval. To enhance the
retrieval component, we employed Nomic’s embedding model to generate high-quality vector representations of
medical documents. The architecture leverages the synergy between retrieval and generation, enabling the LLM
to generate context-aware responses based on relevant clinical trial data. A test dataset was created by extracting
clinical trial reports from open-source documents and generating synthetic questions using a language model.
Our experimental results demonstrate the potential of RAG-based systems in the medical domain, highlighting
their ability to provide accurate and context-rich answers. This study presents both the strengths and limitations
of the RAG approach for specialized domains such as healthcare.

Keywords: Retrieval-Augmented Generation (RAG), Large Language Model (LLM), vector database, clinical
trial, information retrieval.

INTRODUCTION
In recent years, the release of ChatGPT

by OpenAI has spurred rapid growth and
popularity of generative models, particularly
large language models (LLMs). These
models are capable of understanding natural
language inputs, identifying complex
relationships within them, and generating
coherent, context-aware responses. The
underlying transformer architecture [1] was
introduced in 2017, and today, models such
as GPT-3.5 [2] and GPT-4 [3] power some
of the most advanced systems.

One of the primary applications of LLMs
is Question Answering (QA), where the
model not only retrieves answers but
demonstrates deep comprehension and the
ability to link information meaningfully.
However, LLMs face two key limitations:
(1) they are restricted to the knowledge
available at the time of training, and (2) they
may lack the specific domain knowledge
required for specialized applications, such as
medical protocols or proprietary data.

A straightforward strategy for specialized
QA would involve training a new LLM from
scratch using domain-specific data. While
effective, this process demands enormous
computational resources, making it
impractical and unscalable. Another
approach is fine-tuning an existing model on
a smaller, relevant dataset. Though less
resource-intensive, fine-tuning still struggles
with scalability and maintaining up-to-date
information, requiring retraining whenever
new knowledge needs to be integrated.

To address these challenges, Retrieval-
Augmented Generation (RAG) has emerged
as an effective alternative. RAG combines
the power of LLMs with external retrieval
mechanisms, such as vector databases. In
this setup, relevant information is fetched in
real-time from an external knowledge base
and provided as input to the LLM, which
then generates the response. This
architecture eliminates the need for
continuous retraining and ensures scalability
and real-time access to updated information,

International Scientific Conference
UNITECH`2024

“UNITECH – SELECTED PAPERS” Vol. 2024
Published by Technical University of Gabrovo

ISSN 2603-378X

This is an open access article licensed under
Creative Commons Attribution 4.0 International
doi: www.doi.org/10.70456/GAJM2853

http://www.doi.org/10.70456/GAJM2853

International Scientific Conference “UNITECH 2024” – Gabrovo

making it highly suitable for dynamic
environments like medical QA systems.

This paper focuses on the use of RAG
architectures for building advanced QA
systems, with a particular emphasis on
medical applications.

RELATED WORK

RAG aims to improve information
fidelity in complex question-answering and
knowledge-intensive tasks. Lewis et al.
introduced the RAG architecture,
demonstrating how dense passage retrieval
(DPR) provides factual context to generative
models [4]. RAG has since been applied
across domains where current information is
critical. Izacard and Grave [5] improved
RAG with fusion-in-decoder (FiD)
mechanisms, yielding better performance by
integrating multiple retrieved documents.
RAG’s applications in specialized fields,
including healthcare and legal domains,
show promise for domain-specific,
contextually relevant responses [6].

In the medical domain, RAG has emerged
as a promising method for delivering
accurate, context-sensitive answers to
complex clinical and biomedical queries. By
integrating retrieval mechanisms with large
language models, RAG can incorporate up-
to-date information from reliable sources,
crucial in the rapidly evolving field of
medicine. Early work by Lee et al. [7]
introduced dense retrieval techniques
optimized for biomedical literature,
enhancing the accuracy of QA systems. Hu
et al. [8] further refined RAG by
incorporating structured medical ontologies,
which improved the relevance and precision
of generated answers. These advancements
highlight RAG’s potential to enhance
medical AI, enabling models to provide
factually accurate responses grounded in
current clinical evidence.

METHOD

RAG architecture enhances the quality of
answers generated by LLMs by integrating
domain-specific information, ensuring

accurate responses. This architecture offers
several advantages:
• Access to up-to-date, reliable

information by integrating external
knowledge bases.

• Transparency and verifiability by
providing references for the data used in
responses.

• Reduced hallucinations by minimizing
the reliance on latent information within
the model’s parameters.

• Ease of updates, as adding or modifying
domain knowledge does not require
model retraining.

Architecture
RAG consists of two primary phases:

indexing and retrieval with response
generation (Fig. 1).

Indexing occurs offline, before system
use. It involves uploading relevant
documents into a vector database by splitting
them into smaller segments (chunks) to fit
within the LLM’s input limits. Each chunk
is transformed into an embedding vector (a
numerical representation of semantic
content) using models such as BERT [9] or
other transformer-based encoders. These
vectors are stored alongside the text in the
vector database to support semantic search
(finding the most relevant chunks based on
embedding vector similarity).

Chunking documents is essential for
building a usable knowledge base.
Documents, which can span thousands of
pages, are divided into smaller, overlapping
sections. Overlaps help maintain semantic
coherence between sections, preventing key
information from being split across chunks.
For structured formats (e.g., HTML,
DOCX), chunking is straightforward, but
unstructured formats like PDFs may require
more complex processing. Saving metadata
(e.g., document name, page number) with
each chunk improves traceability and
simplifies database updates.

International Scientific Conference “UNITECH 2024” – Gabrovo

Embedding models convert both text and

user queries into vectors, capturing their
semantic meaning. Unlike traditional word-
matching techniques (e.g., TF-IDF),
embeddings can handle synonyms and
different phrasings effectively. Modern
embedding models, such as BERT, use
attention mechanisms to weigh the
importance of words in context. This
research employs the Nomic [10] model,
which follows the BERT framework, to
generate embeddings for both chunks and
user queries.

During the retrieval and response
generation phase, which happens online, the
system processes user queries in real-time.
When a query is received, the retrieval
component calculates its embedding vector
and searches the vector database for the top
K most relevant text chunks. These retrieved
chunks, along with the user query, are fed to
the LLM, which generates a final response.

To enable rapid and efficient lookups,
even when working with large knowledge
bases, RAG systems usually employ vector
databases. These databases are used to find
the most similar chunks of data based on
metrics such as cosine similarity or
Euclidean distance between embedding
vectors. In this paper, we utilize the Neo4j
database, which supports vector search

indexes [11] and uses the HNSW
(Hierarchical Navigable Small World) [12]
algorithm for fast, approximate KNN (K-
nearest neighbors) searches.

This methodology ensures that RAG-
based QA systems are scalable, accurate,
and easy to maintain, making them ideal for
applications requiring real-time access to
specialized information, such as in medical
or legal domains.

Implementation
The organization of the system’s classes

is represented by the UML class diagram
shown in Fig. 2. The VectorStore class serves
as an abstract class that provides an interface
for working with vector databases. The
purpose of this abstraction is to allow for
easy integration of various vector databases
(besides Neo4j) to support future extensions.
The Neo4jVectorStore class inherits from
this abstract class, implementing the core
vector storage functionality with the Neo4j
database.

The Embedding and LLM classes offer
the respective interfaces for working with
embedding models and large language
models. The retrieval component of the
RAG architecture, which searches for the

Fig. 1. Overview of the baseline RAG architecture for medical domain question answering.

International Scientific Conference “UNITECH 2024” – Gabrovo

most relevant text chunks based on a user
query, is implemented within the Retriever
class. This class is further extended by the
RAG class, which provides the final interface
for interacting with the whole system (both
the LLM and RAG classes expose identical
interfaces).

Apart from the main system components,
the diagram also includes utility classes such
as:
• DocumentLoader: Responsible for

loading documents and splitting them
into manageable chunks.

• DocumentChunk: Models individual
chunks of text that flow through the
system.

This modular design ensures the
flexibility and maintainability of the system,
allowing for future enhancements, such as
integrating new vector databases or trying
out different LLMs and embedding models.

EVALUATION

The final step in developing the QA
system involves testing and evaluating the
implemented solution to verify how
accurately it responds to queries over a
specific dataset. It is essential to ensure that
the knowledge base documents are not part
of the LLM's pre-trained corpus. Testing
with general knowledge questions or literary
topics would likely produce biased results,
as such information is often already known

to the LLM. To get reliable results from the
RAG architecture, the dataset used for
testing should contain recent or highly
specific information—for example, clinical
trial reports or company documentation
published after the LLM's training period.

The system will be tested using the GPT-
3.5 LLM, using text chunks with a length of
1024 and an overlap of 128 characters.

The test dataset consists of NIH clinical
trial protocols published after November 11,
2023, which were downloaded from [13].
The system will be evaluated using 8
documents and 22 synthetic questions
related to the content (denoted as Q1-Q22).
These questions aim to test the RAG
system's ability to provide detailed answers
requiring reasoning and multiple
information sources, unlike traditional QA
systems that typically offer short answers
(e.g., "yes/no" or simple definitions).

To provide a quantitative evaluation, the
RAGAS (Retrieval Augmented Generation
Assessment) [14] method will be used.
RAGAS provides several metrics to assess
the system’s performance:
• Answer Relevancy (AR): Measures how

relevant the generated answer is to the
query by calculating the average cosine
similarity between the original query and
artificially generated questions based on
the system’s answer.

Fig. 2. Class Diagram of the Implemented QA System Based on RAG Architecture

International Scientific Conference “UNITECH 2024” – Gabrovo

• Faithfulness (F): Assesses whether the
generated answer is factually correct
based on the retrieved context. An
answer is faithful if all statements can be
inferred from the retrieved context.

• Context Recall (CR): Measures how well
the retrieved context aligns with the
ground truth answer, based on the
overlap of related sentences.

• Answer Semantic Similarity (AS):
Evaluates the cosine similarity between
the generated answer and the correct
answer to determine semantic closeness.

Question AR F CR AS
Q1 0.943 1 1 0.988
Q2 0.95 1 1 0.968
Q3 1 1 0.943 0.944
Q4 0.947 1 0.95 0.874
Q5 1 1 1 0.937
Q6 1 0.756 0.947 0.963
Q7 1 1 0.879 0.955
Q8 0.5 0.95 0.888 0.967
Q9 1 0.926 1 0.982

Q10 1 0.818 1 0.916
Q11 1 1 1 0.982
Q12 0.5 0.954 1 0.956
Q13 1 0.981 0.909 0.851
Q14 0.75 0.964 1 0.979
Q15 1 0.946 0.833 0.883
Q16 0.972 0.833 1 0.913
Q17 0.966 1 1 0.987
Q18 0.943 1 0.8 0.948
Q19 0.967 1 1 0.9
Q20 0.961 1 1 0.938
Q21 0.947 1 0.2 0.974
Q22 0.959 1 1 0.985
AVG 0.923 0.96 0.925 0.945

Table 1. Results of the RAGAS evaluation on
the test dataset

The quantitative results based on the
RAGAS metrics show that the system
performs well across all evaluation criteria,
with 1 being the best score and 0 the worst.

Upon inspecting the quantitative metrics,
it is evident that the GPT-3.5-powered
system produces concise and relevant
answers with high scores across all RAGAS
metrics. The system demonstrates strong
performance in generating relevant and
factually correct answers. The results
confirm that it can effectively extract key
information from the retrieved context and

generate accurate, concise answers aligned
with the user’s query.

CONCLUSION
This work presents a baseline

implementation of the RAG architecture
within the medical domain, providing a
scalable, up-to-date, and verifiable solution
for building QA systems. The architecture
leverages the power of LLMs combined with
retrieval components, enabling the
generation of answers based on the latest
relevant information, even for complex
medical questions.

In addition to implementing the system,
this project also provides an overview of the
system's performance on a relevant medial
dataset. To evaluate the RAG architecture,
the RAGAS evaluation framework was
employed—a relatively recent method
offering several metrics to assess both
individual components and the overall
architecture. Using the implemented system
and the RAGAS framework, the
performance was tested with GPT-3.5,
showing that the system achieved excellent
results in all key metrics.

The strong performance of the GPT-3.5-
powered system highlights that high-quality
QA systems can be achieved without the
need for complex or resource-intensive
infrastructure, expanding the possibilities
for deploying these systems across various
platforms.

The strong performance of the GPT-3.5-
powered system highlights that high-quality
QA systems can be achieved without the
need for complex or resource-intensive
infrastructure, expanding the possibilities
for deploying these systems across various
platforms. While QA systems have long
been a topic in NLP, the integration of
modern approaches such as LLMs and RAG
architectures offers significant
improvements to their functionality. In the
medical domain, this advancement is
particularly promising, as it enables more
accurate and efficient retrieval of medical
information, assisting healthcare
professionals in clinical decision-making.

International Scientific Conference “UNITECH 2024” – Gabrovo

Funding: This work was supported by the
Ministry of Science, Technological
Development and Innovation of the Republic
of Serbia, grant number 451-03-65/2024-
03/200102.

REFERENCES
[1] A. Vaswani, N. Shazeer, N. Parmar, J.

Uszkoreit, L. Jones, A. N. Gomez, Ł.
Kaiser, and I. Polosukhin, “Attention is all
you need,” Adv. Neural Inf. Process. Syst.,
vol. 30, 2017.

[2] T. B. Brown, B. Mann, N. Ryder, M.
Subbiah, J. Kaplan, P. Dhariwal, A.
Neelakantan, P. Shyam, G. Sastry, A.
Askell, et al., “Language Models are Few-
Shot Learners.” 2020. [Online]. Available:
https://arxiv.org/abs/2005.14165

[3] OpenAI, J. Achiam, S. Adler, S. Agarwal,
L. Ahmad, I. Akkaya, F. L. Aleman, D.
Almeida, J. Altenschmidt, S. Altman, et
al., “GPT-4 Technical Report.” 2024.
[Online]. Available:
https://arxiv.org/abs/2303.08774

[4] P. Lewis, E. Perez, A. Piktus, F. Petroni, V.
Karpukhin, N. Goyal, H. Küttler, M.
Lewis, W. Yih, T. Rocktäschel, S. Riedel,
and D. Kiela, “Retrieval-Augmented
Generation for Knowledge-Intensive NLP
Tasks,” in Advances in Neural Information
Processing Systems, H. Larochelle, M.
Ranzato, R. Hadsell, M. F. Balcan, and H.
Lin, Eds., Curran Associates, Inc., 2020,
pp. 9459–9474. [Online]. Available:
https://proceedings.neurips.cc/paper_files/
paper/2020/file/6b493230205f780e1bc26
945df7481e5-Paper.pdf

[5] G. Izacard and E. Grave, “Leveraging
Passage Retrieval with Generative Models
for Open Domain Question Answering,” in
Proceedings of the 16th Conference of the
European Chapter of the Association for
Computational Linguistics: Main Volume,
P. Merlo, J. Tiedemann, and R. Tsarfaty,
Eds., Online: Association for
Computational Linguistics, Apr. 2021, pp.
874–880. doi: 10.18653/v1/2021.eacl-
main.74.

[6] V. Karpukhin, B. Oğuz, S. Min, L. Wu, S.
Edunov, D. Chen, and W. Yih, “Dense
Passage Retrieval for Open-Domain
Question Answering.” Apr. 2020. doi:
10.48550/arXiv.2004.04906.

[7] J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim,
C. H. So, and J. Kang, “BioBERT: a pre-
trained biomedical language
representation model for biomedical text
mining,” Bioinformatics, vol. 36, no. 4, pp.
1234–1240, Sep. 2019, doi:
10.1093/bioinformatics/btz682.

[8] M. Hu, L. Zong, H. Wang, J. Zhou, J. Li,
Y. Gao, K.-F. Wong, Y. Li, and I. King,
“SeRTS: Self-Rewarding Tree Search for
Biomedical Retrieval-Augmented
Generation.” 2024. [Online]. Available:
https://arxiv.org/abs/2406.11258

[9] J. Devlin, M.-W. Chang, K. Lee, and K.
Toutanova, “BERT: Pre-training of Deep
Bidirectional Transformers for Language
Understanding.” 2019.

[10] Z. Nussbaum, J. X. Morris, B. Duderstadt,
and A. Mulyar, “Nomic Embed: Training a
Reproducible Long Context Text
Embedder.” 2024.

[11] “Vector indexes.” [Online]. Available:
https://neo4j.com/docs/cypher-
manual/current/indexes/semantic-
indexes/vector-indexes/

[12] Y. A. Malkov and D. A. Yashunin,
“Efficient and Robust Approximate
Nearest Neighbor Search Using
Hierarchical Navigable Small World
Graphs,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 42, no. 4, pp. 824–836, 2020,
doi: 10.1109/TPAMI.2018.2889473.

[13] “Docugami Knowledge Graph Retrieval
Augmented Generation (KG-RAG)
Datasets: NIH Clinical Trial Protocols.”
Accessed: May 01, 2024. [Online].
Available:
https://github.com/docugami/KG-RAG-
datasets/tree/main/nih-clinical-trial-
protocols

[14] S. Es, J. James, L. Espinosa-Anke, and S.
Schockaert, “RAGAS: Automated
Evaluation of Retrieval Augmented
Generation.” 2023.

	introduction
	Implementation
	Evaluation
	CONCLUSION
	REFERENCES

