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Abstract 
This paper presents the design, implementation, and evaluation of a Retrieval-Augmented Generation (RAG) 

system for medical question answering. The proposed system integrates a state-of-the-art large language model 
(LLM) with a vector database powered by Neo4j for fast and efficient information retrieval. To enhance the 
retrieval component, we employed Nomic’s embedding model to generate high-quality vector representations of 
medical documents. The architecture leverages the synergy between retrieval and generation, enabling the LLM 
to generate context-aware responses based on relevant clinical trial data. A test dataset was created by extracting 
clinical trial reports from open-source documents and generating synthetic questions using a language model. 
Our experimental results demonstrate the potential of RAG-based systems in the medical domain, highlighting 
their ability to provide accurate and context-rich answers. This study presents both the strengths and limitations 
of the RAG approach for specialized domains such as healthcare.  

Keywords: Retrieval-Augmented Generation (RAG), Large Language Model (LLM), vector database, clinical 
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INTRODUCTION 
In recent years, the release of ChatGPT 

by OpenAI has spurred rapid growth and 
popularity of generative models, particularly 
large language models (LLMs). These 
models are capable of understanding natural 
language inputs, identifying complex 
relationships within them, and generating 
coherent, context-aware responses. The 
underlying transformer architecture [1] was 
introduced in 2017, and today, models such 
as GPT-3.5 [2] and GPT-4 [3] power some 
of the most advanced systems.  

One of the primary applications of LLMs 
is Question Answering (QA), where the 
model not only retrieves answers but 
demonstrates deep comprehension and the 
ability to link information meaningfully. 
However, LLMs face two key limitations: 
(1) they are restricted to the knowledge 
available at the time of training, and (2) they 
may lack the specific domain knowledge 
required for specialized applications, such as 
medical protocols or proprietary data. 

A straightforward strategy for specialized 
QA would involve training a new LLM from 
scratch using domain-specific data. While 
effective, this process demands enormous 
computational resources, making it 
impractical and unscalable. Another 
approach is fine-tuning an existing model on 
a smaller, relevant dataset. Though less 
resource-intensive, fine-tuning still struggles 
with scalability and maintaining up-to-date 
information, requiring retraining whenever 
new knowledge needs to be integrated. 

To address these challenges, Retrieval-
Augmented Generation (RAG) has emerged 
as an effective alternative. RAG combines 
the power of LLMs with external retrieval 
mechanisms, such as vector databases. In 
this setup, relevant information is fetched in 
real-time from an external knowledge base 
and provided as input to the LLM, which 
then generates the response. This 
architecture eliminates the need for 
continuous retraining and ensures scalability 
and real-time access to updated information, 
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making it highly suitable for dynamic 
environments like medical QA systems. 

This paper focuses on the use of RAG 
architectures for building advanced QA 
systems, with a particular emphasis on 
medical applications.   

 
RELATED WORK 

RAG aims to improve information 
fidelity in complex question-answering and 
knowledge-intensive tasks. Lewis et al. 
introduced the RAG architecture, 
demonstrating how dense passage retrieval 
(DPR) provides factual context to generative 
models [4]. RAG has since been applied 
across domains where current information is 
critical. Izacard and Grave [5] improved 
RAG with fusion-in-decoder (FiD) 
mechanisms, yielding better performance by 
integrating multiple retrieved documents. 
RAG’s applications in specialized fields, 
including healthcare and legal domains, 
show promise for domain-specific, 
contextually relevant responses [6]. 

In the medical domain, RAG has emerged 
as a promising method for delivering 
accurate, context-sensitive answers to 
complex clinical and biomedical queries. By 
integrating retrieval mechanisms with large 
language models, RAG can incorporate up-
to-date information from reliable sources, 
crucial in the rapidly evolving field of 
medicine. Early work by Lee et al. [7] 
introduced dense retrieval techniques 
optimized for biomedical literature, 
enhancing the accuracy of QA systems. Hu 
et al. [8] further refined RAG by 
incorporating structured medical ontologies, 
which improved the relevance and precision 
of generated answers. These advancements 
highlight RAG’s potential to enhance 
medical AI, enabling models to provide 
factually accurate responses grounded in 
current clinical evidence. 

 
METHOD 

RAG architecture enhances the quality of 
answers generated by LLMs by integrating 
domain-specific information, ensuring 

accurate responses. This architecture offers 
several advantages: 
• Access to up-to-date, reliable 

information by integrating external 
knowledge bases. 

• Transparency and verifiability by 
providing references for the data used in 
responses. 

• Reduced hallucinations by minimizing 
the reliance on latent information within 
the model’s parameters. 

• Ease of updates, as adding or modifying 
domain knowledge does not require 
model retraining. 

Architecture 
RAG consists of two primary phases: 

indexing and retrieval with response 
generation (Fig. 1).  

Indexing occurs offline, before system 
use. It involves uploading relevant 
documents into a vector database by splitting 
them into smaller segments (chunks) to fit 
within the LLM’s input limits. Each chunk 
is transformed into an embedding vector (a 
numerical representation of semantic 
content) using models such as BERT [9] or 
other transformer-based encoders. These 
vectors are stored alongside the text in the 
vector database to support semantic search 
(finding the most relevant chunks based on 
embedding vector similarity). 

Chunking documents is essential for 
building a usable knowledge base. 
Documents, which can span thousands of 
pages, are divided into smaller, overlapping 
sections. Overlaps help maintain semantic 
coherence between sections, preventing key 
information from being split across chunks. 
For structured formats (e.g., HTML, 
DOCX), chunking is straightforward, but 
unstructured formats like PDFs may require 
more complex processing. Saving metadata 
(e.g., document name, page number) with 
each chunk improves traceability and 
simplifies database updates. 
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Embedding models convert both text and 

user queries into vectors, capturing their 
semantic meaning. Unlike traditional word-
matching techniques (e.g., TF-IDF), 
embeddings can handle synonyms and 
different phrasings effectively. Modern 
embedding models, such as BERT, use 
attention mechanisms to weigh the 
importance of words in context. This 
research employs the Nomic [10] model, 
which follows the BERT framework, to 
generate embeddings for both chunks and 
user queries. 

During the retrieval and response 
generation phase, which happens online, the 
system processes user queries in real-time. 
When a query is received, the retrieval 
component calculates its embedding vector 
and searches the vector database for the top 
K most relevant text chunks. These retrieved 
chunks, along with the user query, are fed to 
the LLM, which generates a final response.  

To enable rapid and efficient lookups, 
even when working with large knowledge 
bases, RAG systems usually employ vector 
databases. These databases are used to find 
the most similar chunks of data based on 
metrics such as cosine similarity or 
Euclidean distance between embedding 
vectors. In this paper, we utilize the Neo4j 
database, which supports vector search  

 
indexes [11] and uses the HNSW 
(Hierarchical Navigable Small World) [12] 
algorithm for fast, approximate KNN (K-
nearest neighbors) searches. 

This methodology ensures that RAG-
based QA systems are scalable, accurate, 
and easy to maintain, making them ideal for 
applications requiring real-time access to 
specialized information, such as in medical 
or legal domains. 

Implementation 
The organization of the system’s classes 

is represented by the UML class diagram 
shown in Fig. 2. The VectorStore class serves 
as an abstract class that provides an interface 
for working with vector databases. The 
purpose of this abstraction is to allow for 
easy integration of various vector databases 
(besides Neo4j) to support future extensions. 
The Neo4jVectorStore class inherits from 
this abstract class, implementing the core 
vector storage functionality with the Neo4j 
database. 

The Embedding and LLM classes offer 
the respective interfaces for working with 
embedding models and large language 
models. The retrieval component of the 
RAG architecture, which searches for the 

Fig. 1. Overview of the baseline RAG architecture for medical domain question answering. 
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most relevant text chunks based on a user 
query, is implemented within the Retriever 
class. This class is further extended by the 
RAG class, which provides the final interface 
for interacting with the whole system (both 
the LLM and RAG classes expose identical 
interfaces). 

Apart from the main system components, 
the diagram also includes utility classes such 
as: 
• DocumentLoader: Responsible for 

loading documents and splitting them 
into manageable chunks. 

• DocumentChunk: Models individual 
chunks of text that flow through the 
system. 

This modular design ensures the 
flexibility and maintainability of the system, 
allowing for future enhancements, such as 
integrating new vector databases or trying 
out different LLMs and embedding models. 

 
EVALUATION 

The final step in developing the QA 
system involves testing and evaluating the 
implemented solution to verify how 
accurately it responds to queries over a 
specific dataset. It is essential to ensure that 
the knowledge base documents are not part 
of the LLM's pre-trained corpus. Testing 
with general knowledge questions or literary 
topics would likely produce biased results, 
as such information is often already known 

to the LLM. To get reliable results from the 
RAG architecture, the dataset used for 
testing should contain recent or highly 
specific information—for example, clinical 
trial reports or company documentation 
published after the LLM's training period. 

The system will be tested using the GPT-
3.5 LLM, using text chunks with a length of 
1024 and an overlap of 128 characters. 

The test dataset consists of NIH clinical 
trial protocols published after November 11, 
2023, which were downloaded from [13]. 
The system will be evaluated using 8 
documents and 22 synthetic questions 
related to the content (denoted as Q1-Q22). 
These questions aim to test the RAG 
system's ability to provide detailed answers 
requiring reasoning and multiple 
information sources, unlike traditional QA 
systems that typically offer short answers 
(e.g., "yes/no" or simple definitions). 

To provide a quantitative evaluation, the 
RAGAS (Retrieval Augmented Generation 
Assessment) [14] method will be used. 
RAGAS provides several metrics to assess 
the system’s performance: 
• Answer Relevancy (AR): Measures how 

relevant the generated answer is to the 
query by calculating the average cosine 
similarity between the original query and 
artificially generated questions based on 
the system’s answer. 

Fig. 2. Class Diagram of the Implemented QA System Based on RAG Architecture 
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• Faithfulness (F): Assesses whether the 
generated answer is factually correct 
based on the retrieved context. An 
answer is faithful if all statements can be 
inferred from the retrieved context. 

• Context Recall (CR): Measures how well 
the retrieved context aligns with the 
ground truth answer, based on the 
overlap of related sentences. 

• Answer Semantic Similarity (AS): 
Evaluates the cosine similarity between 
the generated answer and the correct 
answer to determine semantic closeness. 

Question  AR F CR AS 
Q1 0.943 1 1 0.988 
Q2 0.95 1 1 0.968 
Q3 1 1 0.943 0.944 
Q4 0.947 1 0.95 0.874 
Q5 1 1 1 0.937 
Q6 1 0.756 0.947 0.963 
Q7 1 1 0.879 0.955 
Q8 0.5 0.95 0.888 0.967 
Q9 1 0.926 1 0.982 

Q10 1 0.818 1 0.916 
Q11 1 1 1 0.982 
Q12 0.5 0.954 1 0.956 
Q13 1 0.981 0.909 0.851 
Q14 0.75 0.964 1 0.979 
Q15 1 0.946 0.833 0.883 
Q16 0.972 0.833 1 0.913 
Q17 0.966 1 1 0.987 
Q18 0.943 1 0.8 0.948 
Q19 0.967 1 1 0.9 
Q20 0.961 1 1 0.938 
Q21 0.947 1 0.2 0.974 
Q22 0.959 1 1 0.985 
AVG 0.923 0.96 0.925 0.945 

Table 1. Results of the RAGAS evaluation on 
the test dataset 

The quantitative results based on the 
RAGAS metrics show that the system 
performs well across all evaluation criteria, 
with 1 being the best score and 0 the worst. 

Upon inspecting the quantitative metrics, 
it is evident that the GPT-3.5-powered 
system produces concise and relevant 
answers with high scores across all RAGAS 
metrics. The system demonstrates strong 
performance in generating relevant and 
factually correct answers. The results 
confirm that it can effectively extract key 
information from the retrieved context and 

generate accurate, concise answers aligned 
with the user’s query. 

CONCLUSION 
This work presents a baseline 

implementation of the RAG architecture 
within the medical domain, providing a 
scalable, up-to-date, and verifiable solution 
for building QA systems. The architecture 
leverages the power of LLMs combined with 
retrieval components, enabling the 
generation of answers based on the latest 
relevant information, even for complex 
medical questions.  

In addition to implementing the system, 
this project also provides an overview of the 
system's performance on a relevant medial 
dataset. To evaluate the RAG architecture, 
the RAGAS evaluation framework was 
employed—a relatively recent method 
offering several metrics to assess both 
individual components and the overall 
architecture. Using the implemented system 
and the RAGAS framework, the 
performance was tested with GPT-3.5, 
showing that the system achieved excellent 
results in all key metrics. 

The strong performance of the GPT-3.5-
powered system highlights that high-quality 
QA systems can be achieved without the 
need for complex or resource-intensive 
infrastructure, expanding the possibilities 
for deploying these systems across various 
platforms. 

The strong performance of the GPT-3.5-
powered system highlights that high-quality 
QA systems can be achieved without the 
need for complex or resource-intensive 
infrastructure, expanding the possibilities 
for deploying these systems across various 
platforms. While QA systems have long 
been a topic in NLP, the integration of 
modern approaches such as LLMs and RAG 
architectures offers significant 
improvements to their functionality. In the 
medical domain, this advancement is 
particularly promising, as it enables more 
accurate and efficient retrieval of medical 
information, assisting healthcare 
professionals in clinical decision-making.  
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