
PERFORMANCE COMPARISON OF WORDPRESS POSTS AND
MYSQL DATABASE

Dijana Stojić1*, Dejan Vujičić1, Đorđe Damnjanović1, Dušan Marković2
1Faculty of Technical Sciences Čačak, University of Kragujevac, Serbia;

2Faculty of Agronomy Čačak, University of Kragujevac, Serbia;
*Corresponding author: dijana.stojic@ftn.kg.ac.rs

Abstract
Nowadays, WordPress is increasingly used for creating modern websites. An advantage of using WordPress

is its built-in CMS for adding new posts and pages. More complex data collections, such as a German language
collocation dictionary, require the existence of a database. The use of a database for loading the dictionary
could be avoided by using custom posts in WordPress. This paper tested the loading of data from the dictionary
using the Data Tables HTML JavaScript library, which allows for good content overview and enables searching
across any field in the table, which is very useful for dictionaries. The loading was performed in two ways: the
first method was through posts within the WordPress site, and the second method was directly from the
database. Parameters of loading were measured with different numbers of entries, and comparisons were made.

Keywords: Data Tables HTML Javascript, database, performance testing, posts, WordPress.

INTRODUCTION

Creating simple WordPress [1] sites does
not require a high level of programming
knowledge. More and more developers are
using WordPress due to its ease of content
creation and maintenance. The built-in
CMS (Content Management System)
simplifies the process for site editors to add
new pages or posts, reducing the workload
for developers during site maintenance,
which in turn minimizes maintenance costs.
This paper tested the loading of a large
amount of data onto a WordPress site in
two ways: using posts and a MySQL
database. Comparisons were made of
different performance metrics when loading
the created pages.

In the second chapter, the method for
creating test pages is presented, while the
third chapter provides the testing results
and discussion. The final chapter presents
the conclusions and needs for further
improvements.

EXPOSITION

The need to test different methods of
data loading arose from the creation of a
German language collocation dictionary
within the DeSKoll project [2]. For creating
a tabular display, the Data Tables HTML
JavaScript library [3] can be used, which
efficiently presents data obtained in various
ways. For testing purposes, a dictionary of
English words with a simple structure [4]
was used. It consists of four columns:
Word, Count, POS, and Definition. For our
testing, the specific meanings of the
columns were not important. Rows of
5,000, 10,000, and 20,000 entries were
loaded in two ways. The maximum number
of rows was set to 20,000, as the specific
collocation dictionary we aim to create will
not exceed that number. Identical pages
were created on the WordPress site for both
loading methods, as shown in Fig. 1.

International Scientific Conference
UNITECH`2024

“UNITECH – SELECTED PAPERS” Vol. 2024
Published by Technical University of Gabrovo

ISSN 2603-378X

This is an open access article licensed under
Creative Commons Attribution 4.0 International
doi: www.doi.org/10.70456/GNOI2010

https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1
mailto:dijana.stojic@ftn.kg.ac.rs

International Scientific Conference “UNITECH 2024” – Gabrovo

Fig. 1. The appearance of the loaded web page

The first method of loading was
executed using posts, with one post created
for each row. An example of a loaded post
is shown in Fig. 2. [2]. This method is
suitable for potential later modifications of
certain rows by the site editor. The second
method of loading data is directly from the
database. For both methods of data storage,
loading from a CSV file was used.

Fig. 2. The appearance of the loaded post

The method of loading data from the

database into the Data Table is shown in
Fig. 3.

Fig. 3. Loading data from the database into the

Data Table

The method of loading data from
WordPress posts into the Data Table is
shown in Fig. 4.

Fig. 4. Loading data from WordPress posts into

the Data Table

We wanted to compare whether loading
via the database is significantly better than
loading via posts, as editors cannot access
the database itself. As shown in Fig. 2, by
using built-in WordPress posts, editors can
easily make changes visually without
needing to understand the underlying data
structure. This cannot be said for the
MySQL database, as some programming
knowledge is still required.

RESULTS AND DISCUSSION

Performance measurements of the pages
were conducted using a Python script,
utilizing Selenium [5] and Chrome Web
Driver [6]. A part of the script is shown
below:

Page load time
start_time = time.time()
driver.get(url)
end_time = time.time()

Total page load time (when
the page is fully loaded)
load_time = end_time -
start_time

Site performance
performance_data =
driver.execute_script("return
window.performance.timing")
dom_content_loaded =
(performance_data['domContent
LoadedEventEnd'] -
performance_data['navigationS
tart']) / 1000
total_load_time =
(performance_data['loadEventE

International Scientific Conference “UNITECH 2024” – Gabrovo

nd'] -
performance_data['navigationS
tart']) / 1000

Time to Interactive
measurement
tti =
driver.execute_script("""
 let entries =

window.performance.getEntries
ByType('navigation');
 if (entries &&

entries.length > 0) {
 let timing =

entries[0];
 return

(timing.domInteractive -
timing.startTime) / 1000;
 }
 return null;
 """)

return {
 'Total Load Time (s)':

total_load_time,
 'DOM Content Loaded Time

(s)': dom_content_loaded,
 'Page Fully Loaded Time

(s)': load_time,
 'Time to Interactive

(s)': tti if tti else 'N/A'
}

The script measured several parameters

significant for evaluating the loading
performance of web pages for different
numbers of loaded entries (5,000, 10,000,
and 20,000) [7-13]:

• Total Load Time (in seconds):
represents the total time required for
the page to fully load in the
browser. This includes the time
needed to load all elements on the
page, such as HTML, CSS,
JavaScript, images, and other
resources.

• DOM Content Loaded Time (in
seconds): indicates the moment
when the HTML document is fully
loaded and parsed, and all DOM

elements are available for
manipulation via JavaScript.

• Page Fully Loaded Time (in
seconds): indicates the time
required for the web page to fully
load, including all resources such as
images, scripts, styles, and all other
elements.

• Time to Interactive (in seconds):
indicates the time required for the
web page to become interactive,
meaning when all essential
resources are loaded and the DOM
is ready for user interactions.

Fig. 5. shows the measurement results
for the Total Load Time parameter for all
three cases.

Fig. 5. Measurement of the Total Load Time

parameter

Fig. 6. shows the measurement results
for the DOM Content Loaded Time
parameter for all three cases.

Fig. 6. Measurement of the DOM Content

Loaded Time parameter

Fig. 7. shows the measurement results
for the Page Fully Loaded Time parameter
for all three cases.

International Scientific Conference “UNITECH 2024” – Gabrovo

Fig. 7. Measurement of the Page Fully Loaded

Time parameter

Fig. 8. shows the measurement results for
the Time to Interactive parameter for all
three cases.

Fig. 8. Measurement of the Time to Interactive

parameter

The results obtained showed that
performance varies for different quantities
of loaded data, and as the number of data
entries increases, the differences become
more pronounced. This can be partially
explained by the fact that, although posts
are stored in the built-in WordPress
MySQL database, it takes longer to load
them into the data tables. When entering
data directly from the database into the
table, data is accessed directly, whereas
when entering data from posts, data is
accessed indirectly by calling the post,
which retrieves the data from the WP
MySQL database.

CONCLUSION

This paper tested two methods of
loading a large amount of data onto a
WordPress site. The first method, loading
via posts, proved to be good for later

modifications by editors, but performance
results showed that it is significantly less
favorable in terms of site efficiency. The
second method, loading via the database, is
better in terms of performance. Four time
metrics relevant to the loading performance
of the web page were measured.

Since editors are not allowed access to
the database, a page should be created
within the site that would enable editors to
modify any incorrect data without involving
programmers. This page could provide a
customized interface for data entry and
editing, thereby increasing the efficiency of
editors' work and reducing dependence on
technical staff. Considering these aspects, it
is clear that there is a need for a balance
between performance and data accessibility
for editors when loading large quantities of
data onto websites.

Acknowledgments: This research was
supported by the Science Fund of the
Republic of Serbia, PROMIS, Grant no.
10916, German-Serbian Collocation
Dictionary for German Language Learning
and Teaching – DeSKoll. Also, by the
Ministry of Science, Technological
Development and Innovation of the
Republic of Serbia, as parts of the Grant
No. 451-03-66/ 2024-03/200132 with
University of Kragujevac – Faculty of
Technical Sciences Čačak, and Grant 451-
03-66/2024-03/ 200088 with University of
Kragujevac – Faculty of Agriculture Čačak.

REFERENCE

[1] WordPress: https://wordpress.com/,
accessed on October 16th 2024.

[2] DeSKoll Dictionary: https://deskoll-
dictionary.kg.ac.rs/, accessed on October
16th 2024.

[3] Data Tables: https://datatables.net/,
accessed on October 16th 2024.

[4] The Online Plain Text English Dictionary
(OPTED):
https://www.kaggle.com/datasets/dfydata/th
e-online-plain-text-english-dictionary-
opted?resource=download, accessed on
October 16th 2024.

International Scientific Conference “UNITECH 2024” – Gabrovo

[5] Selenium: https://www.selenium.dev/,
accessed on October 16th 2024.

[6] Chrome Web Driver:
https://developer.chrome.com/docs/chrome
driver, accessed on October 16th 2024.

[7] Schmidt, Kristi E., Yili Liu, and Srivatsan
Sridharan. "Webpage aesthetics,
performance and usability: Design variables
and their effects." Ergonomics 52.6, 2009,
631-643.

[8] Mohammed, Rahimoddin, et al.
"Optimizing Web Performance: Front End
Development Strategies for the Aviation
Sector." International Journal of Reciprocal
Symmetry and Theoretical Physics 4, 2017,
38-45.

[9] Chiew, Thiam Kian. Web page
performance analysis. Diss. University of
Glasgow, 2009.

[10] Ramakrishnan, Raghu, and Arvinder
Kaur. "An empirical comparison of
predictive models for web page
performance." Information and Software
Technology 123, 2020, 106307.

[11] Butkiewicz, Michael, Harsha V.
Madhyastha, and Vyas Sekar.
"Characterizing web page complexity and
its impact." IEEE/Acm Transactions On
Networking 22.3, 2013, 943-956.

[12] Zhou, Junzan, et al. "Predicting web
page performance level based on web page
characteristics." International Journal of
Web Engineering and Technology 10.2,
2015, 152-169.

[13] Xilogianni, Christina, et al. "Speed
matters: What to prioritize in optimization
for faster websites." Analytics 1.2, 2022,
175-192.

	introduction
	exposition
	results and discussion
	CONCLUSION
	REFERENCE

