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Abstract 
The complexity and dimensions of deep learning models are increasing. Along with the growing complexity, 

vector databases have been proposed to store high-dimensional data required by the models. Vector databases 
aim to store high-dimensional vectors and perform similarity calculations on these vectors. In this study, the 
insertion and query performances of three different vector databases were measured on datasets of varying 
sizes, and the results were examined. The findings indicate that databases stored in main memory, such as Faiss, 
provide optimal performance without the need for an index in small-sized datasets and have fast response times. 
However, as the data size increases, the advantage diminishes with the increasing main memory requirement, 
and the use of Chroma, which provides index support for disk-stored data, becomes more suitable. 
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INTRODUCTION 
    Deep learning methods have 
revolutionized numerous domains, 
contributing to the proliferation of 
sophisticated models with intricate 
architectures and substantial parameter 
counts. The advent of large language 
models (LLMs) in recent years, fueled by 
advancements in deep learning techniques, 
has further propelled the complexity and 
scale of these models, presenting new 
hurdles in the storage and management of 
vast amounts of data [1]. LLMs, such as 
GPT and BERT, are renowned for their 
ability to process and understand natural 
language at an unprecedented level, 
necessitating innovative approaches to data 
organization and indexing [2]. As these 
models rely on vector representations of 
data rather than direct storage, the shift 
towards high-dimensional embeddings has 
underscored the importance of efficient data 
storage mechanisms and retrieval strategies 
in handling increasingly complex datasets. 

In addressing these evolving challenges, 
vector databases have emerged as pivotal 
solutions for effectively managing large-

scale datasets characterized by high-
dimensional embeddings.  

Vector databases represent a specialized 
class of databases designed to handle high-
dimensional data and facilitate efficient 
storage, indexing, and retrieval of vector 
representations. In recent years, the 
proliferation of deep learning models and 
the increasing prevalence of high-
dimensional data have underscored the 
importance of specialized solutions for 
managing complex datasets. Vector 
databases address this need by offering 
tailored functionalities to support the 
storage and querying of vectorized data, 
making them indispensable tools across 
various domains. 

Vector databases offer numerous 
advantages compared to traditional 
databases. They excel in efficiently storing 
high-dimensional data and enable fast 
querying of vector data, making them ideal 
for scenarios with large datasets. 
Additionally, these databases are optimized 
to handle complex, multi-dimensional data 
effectively, which traditional databases may 
struggle with. They also support scalability,  

International Scientific Conference 
UNITECH`2024 

“UNITECH – SELECTED PAPERS” Vol. 2024 
Published by Technical University of Gabrovo 
 

ISSN 2603-378X 

This is an open access article licensed under 
Creative Commons Attribution 4.0 International 

doi: www.doi.org/10.70456/TBRN3643

http://www.doi.org/10.70456/TBRN3643


International Scientific Conference “UNITECH 2024” – Gabrovo 

allowing for seamless expansion to 
accommodate growing datasets and 
increasing query loads. Moreover, vector 
databases employ specialized indexing 
techniques tailored for high-dimensional 
data retrieval, further enhancing their 
efficiency.  

However, vector databases also pose 
certain limitations and challenges. 
Implementing and managing them can be 
complex, requiring specialized knowledge 
of indexing techniques and query 
optimization. Indexing high-dimensional 
data incurs overhead in terms of storage 
space and computational resources, 
potentially impacting performance and 
scalability. As the dimensionality of the 
data increases, the effectiveness of indexing 
and querying operations may decrease due 
to the curse of dimensionality. 
Preprocessing data for storage in vector 
format and ensuring consistency may also 
add complexity to the data management 
pipeline. Achieving optimal performance 
often involves trade-offs between storage 
efficiency, query speed, and index 
maintenance costs.  

Despite these challenges, vector 
databases find application in various 
domains and use cases. They are 
indispensable in machine learning for tasks 
such as similarity search, clustering, and 
classification. In image processing, they 
enable content-based image retrieval, object 
recognition, and similarity analysis. Natural 
language processing applications benefit 
from vector databases for tasks like 
semantic search, sentiment analysis, and 
text summarization. Recommendation 
systems leverage these databases for 
personalized recommendations and content-
based filtering. Genomics and 
bioinformatics rely on vector databases for 
sequence alignment, gene expression 
analysis, and drug discovery. Geospatial 
data analysis benefits from vector databases 
for location-based services, route 
optimization, and spatial clustering. 
Overall, the versatility, efficiency, and 
scalability of vector databases make them 

essential tools for managing and analyzing 
high-dimensional data across diverse 
domains and applications. 

Unlike conventional relational databases, 
vector databases are tailored to 
accommodate the unique requirements of 
deep learning models, offering specialized 
functionalities for storing, indexing, and 
querying vectorized data [3]. These 
databases empower users to perform 
intricate operations such as proximity 
detection and similarity searches, enabling 
nuanced analysis and retrieval of data 
points based on their vector representations. 

Despite the relative novelty of vector 
database concepts, the landscape has 
witnessed a proliferation of diverse 
solutions, with numerous databases being 
introduced in recent years [4][5]. The rapid 
expansion of the vector database ecosystem 
underscores the growing demand for 
specialized solutions capable of addressing 
the unique challenges posed by deep 
learning applications [6]. While these 
databases share common functionalities at 
their core, variations in their underlying 
mechanisms can lead to differences in 
performance and scalability. In this study, 
we focus on evaluating three prominent 
open-source vector databases: Chroma, 
Qdrant, and Faiss. Each of these databases 
boasts an automated indexing mechanism, 
streamlining the process of data 
organization and retrieval for enhanced 
efficiency and usability. 

Chroma [7] stands out as a robust vector 
database tailored specifically for 
accommodating the requirements of large 
language models (LLMs). Its versatility 
extends beyond mere storage of embedding 
vectors; Chroma also facilitates the 
integration of metadata alongside these 
vectors, enriching the dataset with 
contextual information. This metadata 
inclusion opens avenues for sophisticated 
filtering mechanisms, allowing users to 
query based on specific attributes beyond 
just similarity metrics. 

Qdrant [8], akin to Chroma, presents a 
comprehensive solution for storing high-



International Scientific Conference “UNITECH 2024” – Gabrovo 

dimensional vectors along with associated 
metadata payloads. Its architecture 
prioritizes optimization for storage and 
retrieval tasks, enabling fast search and 
similarity computations even on large-scale 
datasets. Moreover, Qdrant offers the 
flexibility of operating in both memory and 
disk modes, catering to diverse deployment 
scenarios. In this study, the performance of 
Qdrant was evaluated in both memory and 
disk configurations, providing insights into 
its adaptability and efficiency across 
different environments. 

Faiss, a library developed by Meta, 
diverges from traditional database 
paradigms with its memory-centric 
approach. By predominantly retaining data 
in memory, Faiss capitalizes on the rapid 
access speeds afforded by RAM, ensuring 
lightning-fast query responses and 
computation times. While Faiss does offer 
the capability to persist data to disk when 
necessary, its primary mode of operation 
revolves around efficiently managing data 
within memory. This memory-centric 
design choice underpins Faiss's exceptional 
performance, especially in scenarios where 
real-time responses and minimal latency are 
paramount. Furthermore, Faiss boasts 
versatility with versions optimized for both 
CPU [9] and GPU [10] architectures, 
although for this study, the CPU-based 
version was employed to maintain 
consistency in experimental conditions and 
facilitate fair comparisons with other 
methodologies. 

In the literature, survey studies on vector 
databases have been conducted before, but 
a performance comparison has not been 
done previously. 

In [11], authors provide a comprehensive 
survey of vector databases, encompassing 
storage techniques (sharding, partitioning, 
caching, replication), search algorithms 
(NNS, ANNS), and challenges in managing 
high-dimensional vector data. The authors 
delve into the integration of vector 
databases with Large Language Models 
(LLMs), exploring their potential in various 
applications. They emphasize the role of 
vector databases in enhancing LLM 
capabilities, such as long-term memory, 

semantic search, and recommendation 
systems. Additionally, the authors discuss 
the potential of LLMs to augment vector 
database functionalities, including text 
generation, augmentation, and 
transformation. The survey concludes by 
highlighting the significance of retrieval-
based LLMs and illustrating a complex 
application of vector database-LLM 
synergy in scientific research. 

In [12], authors present a concise 
overview of vector databases, emphasizing 
their role in managing and analyzing high-
dimensional data. The authors detail the 
workflow of vector databases, including 
indexing (transformation and compression) 
and querying (transformation, rough-
comparison, detailed-comparison, and 
retrieval). They also elaborate on similarity 
search algorithms (K-Means, Locality 
Sensitive Hashing, Hierarchical Navigable 
Small Worlds, Product Quantization) and 
similarity metrics (Euclidean Distance, Dot 
Product Similarity, Cosine Similarity) used 
in vector databases. The paper concludes by 
comparing popular vector database 
products (Pinecone, Chroma, Milvus) and 
discussing potential future research 
directions in this field. 

In this study, the insertion and query 
performances of three different vector 
databases were evaluated using datasets of 
various sizes, and the results were analyzed. 

In the next section of the study, the 
configurations used, and the datasets 
created for the experiment are explained. In 
the final section, the results are examined.   
 
EXPERIMENT SETUP AND RESULTS 

In the study, three different vector 
databases, namely Chroma, Qdrant, and 
Faiss, were used. Although the databases 
also have metadata storage capabilities, 
vectors from the Deep1B [13] dataset are 
added to these databases without metadata 
in order to obtain only dimension and query 
results related to vectors. No replication or 
partitioning was performed on the 
databases. Indexing was performed for each 
database along with the added data, and 
indexing times were included in the 
insertion times. After creating the 
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databases, queries were made for randomly 
selected 1000 vectors from the dataset to 
measure query performance. In the query, 
the parameters of the 10 nearest similar 
vectors were selected for each vector. All 
databases return the id fields of similar 
vectors as query results. An M1 Max 
processor with 64 GB of main memory on a 
Macbook Pro was used to obtain the timing 
results. The memory usage for obtaining 
Faiss and Qdrant results does not reach 64 
GB. Therefore, no swap operation with disk 
is performed in obtaining timing results, 
and the entire runtime is obtained in 
memory. 

To measure the performance of datasets 
of different sizes, 10000, 25000, 50000, 
100000, 250000, 500000, 1000000, 
2500000, 5000000, and 9990000 vectors 
from the Deep1B dataset were sequentially 
written to the databases, and then similarity 
queries were run on these databases. 
Default similarity measurement methods of 
each database were used in running the 
queries. The default method for Chroma is 
called "Squared L2." Cosine distance was 
selected for Qdrant. For Faiss, the L2 
method was again chosen. Database sizes 
were obtained to measure the total size of 
vectors and indexes and the difference in 
access speed for the lost disk space, and are 
presented in Figure 1. Database size results 
include the entire space occupied by the 
data and indexes. 

 

 
Fig. 1. Database Sizes (MB) 

As seen from Figure 1, Chroma and 
Qdrant yield similar results in terms of data 
size, and the data size gap between them 
and Faiss widens as the number of vectors 
increases. Since Faiss is primarily kept in 
memory by default, the current results 
represent the size on disk after Faiss's 
writing method is employed. 

The insertion times of datasets into the 
databases of various sizes are provided in 
Table 1. At this stage, since there exists a 
version of Qdrant stored in memory, these 
results are also obtained and presented 
under the name Qdrant (Memory). These 
results underscore the importance of 
considering both disk-based and memory-
resident configurations when evaluating 
database performance, particularly in 
scenarios where insertion speed is crucial. 

To mitigate the potential impact of total 
data volume during insertion, all databases 
were reconstructed for each dataset size, 
focusing solely on databases containing 
vectors of the corresponding size. This 
approach ensures that the timing results 
accurately reflect the performance of each 
database system under consistent 
conditions. This procedure guarantees fair 
comparisons and eliminates biases 
introduced by varying total data amounts 
during insertion. 

 
Table 1. Insertion Time Results (s) 

Vector  
count Chroma Qdrant Qdrant  

(Memory) Faiss 

10000 5,92 9,06 0,17 0,00 
25000 15,30 28,51 0,57 0,00 
50000 31,83 60,09 1,20 0,01 
100000 67,42 101,80 3,25 0,02 
250000 187,25 213,93 25,97 0,05 
500000 434,89 354,75 145,74 0,08 
1000000 1135,35 1125,20 618,54 0,20 
2500000 5438,36 5218,59 3797,58 0,51 
5000000 20020,33 19652,34 15206,34 1,31 
9900000 62837,93 70091,99 62054,56 4,35 

 
As evident from the insertion times, as 

expected, Faiss exhibits much faster 
insertion compared to other databases, 
attributed to its utilization of RAM. The 
current timing results include the time taken 
by Faiss to write to disk. However, since 
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the disk writing process is executed in a 
single operation, there is no performance 
degradation compared to the fragmented 
insertion process of other databases. On the 
other hand, other databases show increasing 
insertion times with growing data volume. 
This is primarily due to the expected 
growth of the index and the increasing 
indexing operations. Unexpectedly, when 
Qdrant is run in memory, it demonstrates 
similar results to its disk-based counterpart, 
showing increased insertion times as the 
dataset grows. 

All databases accept parameters to 
determine the number of different vectors 
to search, the number of closest vectors to 
return for each searched vector, and 
whether to apply filtering within stored 
documents if present. As mentioned in 
earlier sections of the study, no documents 
or metadata were added to the database for 
the sole purpose of measuring vector 
performance. Therefore, such a filter was 
not included in the search queries. 

The query times obtained for the 
scenario where queries were made for 1000 
randomly selected vectors from the dataset 
and the id fields of the top 10 similar 
vectors were returned as results are 
presented in Table 2. This querying 
scenario represents a common use case for 
similarity search operations and provides 
valuable insights into the efficiency of 
vector retrieval processes in real-world 
applications. 

 
Table 2. Query Time Results (s) 

Vector  
count 

Chroma Qdrant Qdrant  
(Memory
) 

Faiss 

10000 0.288 2.814 2.436 0.007 
25000 0.283 4.295 4.071 0.014 
50000 0.291 11.566 11.088 0.027 
100000 0.299 25.892 24.053 0.056 
250000 0.309 64.833 61.433 0.13 
500000 0.319 132.442 125.708 0.309 
1000000 0.326 285.247 265.843 0.586 
2500000 0.34 768.06 729.046 1.479 
5000000 0.461 1633.158 1507.977 3.146 
9900000 0.443 3042.158 3088.226 6.164 

 
As seen from Table 2, as the data size 

increases, Chroma achieves higher 

performance compared to Faiss. Chroma 
stores the main data on disk, while Faiss 
resides entirely in main memory, resulting 
in varying performance characteristics. 
Since the search time results of Chroma do 
not change significantly with the data size, 
Chroma has achieved more successful 
results than Faiss after 500,000 vectors. On 
the other hand, Qdrant and Faiss exhibit 
parallel increases in search time results with 
the increase in data size. While Qdrant 
operates in both memory and disk, it has 
similar search times, which 

In contrast, both Qdrant and Faiss show 
concurrent increases in search time results 
as the dataset size expands. Despite 
Qdrant's ability to operate in both memory 
and disk modes, its search times remain 
notably slower compared to other 
databases. This suggests that while Qdrant 
offers versatility in operational modes, its 
performance may lag behind other 
databases, especially in larger datasets. 
 
CONCLUSION 

Deep learning methods continue to 
evolve, pushing the boundaries of 
complexity and model sizes even further. 
As datasets grow larger and more intricate, 
the need for efficient organization and 
retrieval mechanisms becomes increasingly 
paramount. Vector databases emerge as 
indispensable tools in this landscape, 
offering tailored solutions for indexing and 
querying high-dimensional data. 

The versatility of vector databases lies in 
their ability to handle diverse data 
structures, making them well-suited for the 
varied demands of deep learning 
applications. From embedding 
representations to similarity searches, these 
databases provide a robust framework for 
managing complex data relationships. 

In the study, the exploration of open-
source vector databases such as Chroma, 
Qdrant, and Faiss underscores the 
importance of tailored solutions for 
handling different types and sizes of vector 
data. Each database brings its unique set of 
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features to the table, catering to specific 
requirements and performance expectations. 

While Faiss successes in scenarios where 
real-time responses and minimal overhead 
are critical, Chroma's disk-based storage 
and indexing capabilities offer a compelling 
alternative for larger datasets where 
memory constraints become a concern. 

Looking ahead, future investigations aim 
to delve deeper into the nuanced 
performance characteristics of these vector 
databases across various configurations. 
The exploration of sharding, partitioning, 
and replication strategies promises to unveil 
new insights into optimizing database 
performance for evolving deep learning 
workloads. 
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