

OBJECT MODEL OF POWER SUBSTATION FOR RELIABILITY EVALUATION

Dragoslav Perić

VIPOS, Valjevo, Serbia

Miladin Tanasković

Slobodan Obradović Information Technology School

Belgrade, Serbia

Freelance Consultant, Belgrade, Serbia

Abstract

In this paper a new model of power system substations is proposed, based on object-oriented programming. This model includes all substations' elements separately, which is contrary to the usual approach of grouping elements by experts. A practical technique to input a single line diagram and relevant elements properties is allowed too. Minimal paths can be calculated, which are the necessary basis to make other reliability calculations.

Keywords: power substation, reliability, minimal paths, object-oriented programming.

INTRODUCTON

Reliability is one of the main properties of technical systems. Usually, failure rates and durations were used as main reliability indices of power systems. Power substation can be considered as a system of their equipment – elements. Because of the huge number of elements, some heuristic methods based on grouping elements to blocks were developed [1,], [2]. These methods require too much experts' time to compose blocks and make a list of consequences of blocks' failures – so they are not widely used.

One new element-by-element completely automated method of power substation reliability calculation, based on object programming is suggested in this paper.

MODEL DESCRIPTION

One voltage level of the power substation can be represented by ring-radial structure (Fig. 1.). Ring in the middle of the figure represent one or more bus systems. This ring can be closed (rarely) or open with or without the possibility to be closed by switching devices. Usually, in single line diagrams, linearized rings are drawn.

Branches connect substation ring to other ring-radial structure in the same or different substation. Branches can be transformers, generators, lines, etc.

Fields connect branches with bus systems. The fields consist of different devices, such as disconnectors, circuit breakers, galvanic connections, etc.

Ring-radial structure has n branches and n corresponding sectors. Each sector has three segments: *radial*, *connecting* and *bus* segments.

The *bus* segment is part of substation ring with corresponding devices. The substation field is modelled as the union of radial and connecting segments. The connecting segment is a connection between field and substation ring itself, while the radial segment represent the rest of the field and the elements such as power transformers and lines which link to other voltage levels of substation or to other substations.

In the proposed model, each segment represents the union of possible single-line diagrams (Fig. 2. and Fig. 3.). The symbols "/" and "X" on the figures are used for

disconnectors and circuit breakers, respectively.

Fig. 1. Extended substation model

Fig. 2. Radial and connecting segment

Single line diagrams consist of elements marked with numbers. The main types of elements are:

- 1: galvanic connection,
- 2: disconnector,
- 3: circuit breakers,
- 4: line,
- 5: power transformer,
- 6: generator,
- 9: power source,
- 11: bus section with one connection (e.g. elements 59 and 60 on Fig. 2.),
- 12: bus section with two connection (e.g. element 58 on Fig. 2.).

The other elements, such as current and voltage transformers, which are functionally connected with above elements can be included by mentioned blocks [1].

Part of single-line diagrams of real substation is represented as subsets of elements, e.g. in radial segment:

- 1, 2 and 6 on Fig. 2. represent one bus field with disconnector only,
- 1, 2, 6, 7, 8 on Fig. 2. represent one bus field with disconnector - circuit breaker
 - disconnector,
- 1, 2, 6, 7, 8 and 3 on Fig. 2. represent one bus field with disconnector - circuit breaker - disconnector with bypass,
- 1, 2, 6, 7, 10, 13 and 9 on Fig. 3. represent double bus field with bypass.

On that way, all existing of substation fields can be represented.

a

Международна научна конференция "УНИТЕХ'17" – Габрово

Paths between branches and buses are marked with rounded numbers. In the last example, the paths are:

- path 1: 1, 2, 6, 7, 10 that links branch and bus system 1;
- path 2: 1, 2, 6, 7, 13 that links branch and bus system 2;
- path 4: 1, 2, 9 10 that links branch and bus system 1;
- path 5: 1, 2, 9 13 that links branch and bus system 2.

CLASS DESCRIPTION

A. CLASS EQUIPMENT

Main properties for class Equipment are:

- el type type of element,
- f failure rate,
- fa active failure rate,
- r failure duration,
- ra switching time of active failure,
- kf correction factor for f,
- kfa correction factor for fa,
- kr correction factor for r,
- kra correction factor for ra,
- u unavailability (f * r),
- ua unavailability due to active failure (fa * ra).

Types of element are: circuit breaker, disconnector, etc. as mentioned before. Correction factors are used to set specific failure rate and duration in different segments.

B. CLASS SEGMENT

Main properties for class Segment are:

- seg_type radial, connecting and bus,
- N bus number of bus systems,
- in out in, out or both power flow,
- on_off on/off status of element (if applicable),
- bypass_DC filed with bypass disconnector,
- double_CB field with double circuit breaker,

- equip field equipments as object of class Equipment
- el_type type of element,
- PthElSeg paths in segment as a list of element (as marked on Fig. 1 and Fig. 2.)
- link matrix of two columns and N_Path row that describe what paths link (0 branch, 1 bus 1, 2 bus 2),
- N_Path number of segment paths.

The main methods for class Segment is:

- Path (p_type, cw_ccw)
- return the list of different properties of segment path element.

First of all, Path can be expressed as a list of elements (the same as PthElSeg), but also as a list of element types (el_type) - in both cases multiplied by +1 or -1 as a mark of on-off status (-1 for open/disconnected). For galvanic connection marked as 1, mark -1 means nonexisting connection, useful to represent an open ring.

Element can be listed in clockwise or counter clockwise direction in relation to substations ring.

C. CLASS SUBSTATION

Main properties for class Substation are:

- RadSeg array of radial type object of the class Segment,
- BusSeg array of bus type object of the class Segment,
- ConSeg array of connecting type object of the class Segment,
- N_Seg number of sectors (equal to number of segment of each type).

After the definition of the segment, one substation can be easily described as a collection of segments.

The main method for class Substation is:

• MinPath returns minimal paths for some substation function.

Minimal pats are the basic input for further reliability calculations [2], [4].

EXAMPLE

One single bus substation with six sectors is shown on Fig. 3. Element marks begin with sector serial number (1st digit), while the last two digits correspond to element marks on figures 1 and 2. For example, elements of sector 1 are:

- from 101 to 108 radial segments,
- 159 connecting segment and
- 179 bus segment (galvanic connection only).

Minimal paths, necessary for further reliability calculation are shown on Fig. 4. There are 40 minimal paths in total, i.e. 20 pairs - first minimal path in clockwise and second one in counter clockwise direction. Eight of them end at branch 2 - these are minimal paths for reliability evaluation of supplied branch - marked with "***". Four opened paths are underlined.

All elements on single line diagram have status on, except one - circuit breaker in sixth bus segment -670 (minus means open).

All four closed minimal paths (with all elements in status on) are underlined.

That means branch 2 is supplied from branch 1 (1st minimal path), branch 3 (14th minimal path), branch 4 (24th minimal path) and branch 6 (34th minimal path).

Fig. 3. Example of a single bus substation

Minimal paths (off, - on)																					
No from to																					
1 1	2-***101	102	106	107	108	159	259	208	207	202	201										
2 1	2 * * * 1 0 1	102	106	107	108	159	671	-670	669	659	559	459	371	370	369	359	259	208	207	202	201
3 1	3101	102	106	107	108	159	259	359	308	307	306	302	301	0,0	000	005	200	200	207	202	201
4 1	3 101	102	106	107	108	159	671	-670	669	659	559	459	371	370	369	359	308	307	306	302	301
5 1	4101	102	106	107	108	159	259	359	369	370	371	459	408	407	406	402	401				
6 1	4 101	102	106	107	108	159	671	-670	669	659	559	459	408	407	406	402	401				
7 1	5101	102	106	107	108	159	259	359	369	370	371	459	559	508	507	502	501				
8 1	5 101	102	106	107	108	159	671	-670	669	659	559	508	507	502	501						
9 1	6101	102	106	107	108	159	259	359	369	370	371	459	559	659	608	607	606	602	601		
10 1	6 101	102	106	107	108	159	671	-670	669	659	608	607	606	602	601						
11 3	1 301	302	306	307	308	359	369	370	371	459	559	659	669	-670	671	108	107	106	102	101	
12 3	1301	302	306	307	308	359	259	159	108	107	106	102	101								
13 3	2 ***301	302	306	307	308	359	369	370	371	459	559	659	669	-670	671	159	208	207	202	201	
14 3	2-***301	302	306	307	308	359	259	208	207	202	201										
15 3	1	302	306	307	300	350	360	370	371	150	109	407	106	402	4.0.1						
16 3	4301	302	306	307	308	359	259	159	671	-670	400	659	559	402	401	407	406	402	401		
17 3	5301	302	306	307	308	359	369	370	371	459	559	508	507	502	501	407	400	402	401		
18 3	51301	302	306	307	308	359	259	159	671	-670	669	659	559	502	507	502	501				
19 3	6301	302	306	307	308	359	369	370	371	459	559	659	608	607	606	602	601				
20 3	6 301	302	306	307	308	359	259	159	671	-670	669	659	608	607	606	602	601				
21 4	1 401	402	406	407	408	459	559	659	669	-670	671	108	107	106	102	101					
22 4	1401	402	406	407	408	459	371	370	369	359	259	159	108	107	106	102	101				
23 4	2 ***401	402	406	407	408	459	559	659	669	-670	671	159	208	207	202	201					
24 4	2-***401	402	406	407	408	459	371	370	369	359	259	208	207	202	201						
25 4	3 401	402	406	407	408	459	559	659	669	-670	671	159	259	308	307	306	302	301			
26 4	3401	402	406	407	408	459	371	370	369	359	308	307	306	302	301						
27 4	5401	402	406	407	408	459	559	508	507	502	501										
28 4	5 401	402	406	407	408	459	3/1	370	369	359	259	159	6/1	-670	669	659	559	508	507	502	501
29 4	6401	402	406	407	408	459	559	659	608	607	606	602	601	670	660	650	600	607	60 C	600	C 0 1
30 4	6 401	402	406	407	408	459	3/1	370	369	359	259	100	6/I 100	-670	669	659	608	607	606	602	601
31 0	1 601	602	606	607	608	659	669	-670	271	270	107	2E0	250	150	100	107	106	102	101		
32 0	21***601	602	606	607	600	659	559	439	671	150	209	207	202	201	100	107	100	IUZ	TOT		
34 6	2=***601	602	606	607	608	659	559	459	371	370	369	359	259	201	207	202	201				
54 0	2							439			509	559	233	200	207	202	201				
35 6	3 601	602	606	607	608	659	669	-670	671	159	259	308	307	306	302	301					
36 6	3601	602	606	607	608	659	559	459	371	370	369	359	308	307	306	302	301				
37 6	4 601	602	606	607	608	659	669	-670	671	159	259	359	369	370	371	408	407	406	402	401	
38 6	4601	602	606	607	608	659	559	459	408	407	406	402	401								
39 6	5 601	602	606	607	608	659	669	-670	671	159	259	359	369	370	371	459	508	507	502	501	
40 6	5601	602	606	607	608	659	559	508	507	502	501										

Fig. 4. All minimal paths of substation on Fig. 3.

CONCLUSION

The proposed element-by-element model gives an efficient method of analysing the reliability of power substation including and a practical technique of inputting a single line diagram arrangement and relevant elements properties.

Minimal paths can be calculated, as a necessary basis to make other reliability calculations.

REFERENCE

- [1] Jovan M. Nahman, "Dependability of Engineering Systems", Springer-Verlag, Berlin, Heidelberg, New York, 2002.
- [2] J. M. Nahman, Minimal Paths & Cuts of Networks Exposed to Common-Cause Failures, IEEE Transactions on Reliability, vol. 41, No. 1, MARCH, 1992.
- [3] D. Peric, M. Tanaskovic, N. Petrovic, "Reliability of HV/MV substations with air-isolated and gas-insulated switchgear", Conference CIGRE, Paris, 2014.
- [4] YK Lin, "System Reliability Evaluation for a Multistate Supply Chain Network With Failure Nodes Using Minimal Paths", IEEE Transactions on Reliability 58 (1), 34-40, 2009.