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Abstract 

In real iterations, several types of mean value theorems for definite integrals are used. In complex domain, we cannot 

specifically formulate the mean value theorem of a particular complex line integral  
L

f z dz , since we are unable to give 

an appropriate geometric interpretation of the integral over the surface below a curve L  (from 0z  to 1z ). Based on the 

mean value theorems for a complex line integral in [Vujakovic J., The mean value theorem of line complex integral and 
Sturm function. Applied Mathematical Sciences 2014; 8 (37): 1817-1827.], we got the idea to formulate the second mean 
value theorem in complex domain for the product of two analytic functions. 
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INTRODUCTION AND PRELIMINARIES 

In real iteration several types of mean value 
theorems for definite integrals are used. We 
will mention only two. 

Theorem 1. (The first mean value theorem 
[1]). Let :[ , ]f a b  �  be a continuous 
function. Then there exists ( , )a b   such that 

  ( )( ).
b

a

f x dx f b a                (1) 

Theorem 2. (The second mean value theorem 
[2]) If :[ , ]f a b  �  is a continuous function 
on [ , ]a b  with ( , )x a b , ( )m f x M   and 

:[ , ]g a b  �  is an integrable function, then 
there exists   in ( , )a b  such that 

  ( ) ( ) ( ) .
b b

a a

f x g x dx f g x dx        (2) 

It is usual to use the term of mean values for 
complex integral and closed contours, 
according to which  f z  is analytical or 

continuous while inside contour it can be 
discontinuous and even non-analytical [3] This 
was suggested by Cauchy’s fundamental 
theorem 

  0.
L

f z dz �                          (3) 

If z  is interior point of contour L  then 
Cauchy’s integral formula is valid 

 1
( ) .

2 L

f
f z d

i z




 


�               (4) 

If  f z  is analytical on L , then L  can be 

replaced by the simplest closed contour, circle 
( , )K K z R , so standard formula (4) is also 

valid for L K . 

The mean value of function was obtained from 
(4), for iz Re    , 0 2   , according to 
the following formula 

2

0

1
( ) ( ) .

2
if z f z Re d


 


           (5) 

However, in solving complex differential 
equations and for the needs of iterations, we 
could not use the formulas from (3) to (5). It 
was necessary to find a simple formula of 
mean value, as in a real case [4], where   is a 
certain kind of mean value between points 0z  

and z , and ( )a z  is an analytic function. In [5] 
we have shown that formula 
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0

0

:

( ) ( )( )
z

L z

a z dz a z z              (6) 

where  a z  is analytical function in area G , 

where is placed curve L  on which integration 
is conducted, z  and 0z  are initial and final 

limits of integral,   is certain point from G , 
does not have to be L  but which satisfies 
certain standards of approximation, can be 
adopted as some kind of mean value for 
complex integral if integration path is open 
line L . 
In the further work we need the following 
statements. 
Theorem 3 ([5]). The integral of power 
function   , 0na z z n  , on Jordan curve L , 

inside the circle z R  can be replaced by 

integral on the shortest path, that is, on 
direction Oz ,  

:0

( ) ( )
z

L

a z dz a z              (7) 

where 

1n

z

n
 


                       (8) 

is the midpoint on the path and 

( ) ( )
11

n

n

z z
a a

nn
  


.              (9) 

Formula (7) is the mean value formula for 
complex integral. 
Theorem 4. [5] For arbitrary polynomial 

 
0

n
k

n k
k

P z a z


   applies formula (7), for mean 

value of integral, where   is certain mean 

value of z  with module lesser than z R  and 

which depends on z , that is on  nP z . 

 

MAIN RESULTS  

For the needs of iterations, for solving a 
complex differential equation, we found 
important to find the complex line integral on 
the open path  

 
:0

z

L

I za z dz                         (10) 

where    f z a z  and  g z z .  

Based on the theorems 1 and 2, together with 
the theorems 3 and 4, we got the idea to 
formulate the second mean value theorem for 
complex line integrals of product of analytical 
functions  f z  and  g z . 

Theorem 5. For integrals of the type (10), 
where  a z  is the analytical function in the 

circle z R , the formula of the mean integral 

value is valid 

   2

:0

z

L

za z dz z a                   (11) 

where   is the interior point of the circle 

z R   . 

Proof. For simplicity, let analytical function 

   f z a z  be given by power series 

  0 1
0

.k k
k k

k

a z a z a a z a z




         (12) 

Since 

  1

0

2 3 1
0 1 2 ,

k
k

k

k
k

za z a z

a z a z a z a z










     


 

 

for the sake of analyticity, this series can be 
integrated term by term. Hence, we obtain 

series 2

0 2
kk

k

a
z z

k



  . 

On the other hand, using the mean value 
Theorem 3, that is formula (7), we obtain 
equality 

2 2

0 02
k kk

k
k k

a
z z z a

k


 

 


  .            (13) 

 

Now, we try to find the relationship between 
the mean value   and the argument z , for each 

coefficient ka . From equality (13) 

2
2 0 1 2

2 2
0 1 2

2 3 4 2

k
k

k
k

a a za z a z
z

k

z a a a a  

 
       

       

 

 

 

follows
2

20 1 2
0 1 2, , , , ,

2 3 4 2

k
kk

k

a a za z a z
a a a a

k
     




that is 0 0,
3 2

z z
a   

2k

z

k
 


 . 
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Since this is contradictory, we must observe 

the sums of analytic series 
0 2

kk

k

a
z

k



   and 

0

k
k

k

a 



 . If we evaluate these series, we see 

that the coefficients of the modular series 

0 2
k k

k

a
z

k



   are smaller than the coefficient of 

series 
0

k
k

k

a 



 . The same can be expected 

for the sum, because the coefficients ka  

directly affect the radius of convergence. 

In order to maintain the equality of the 
modules of n th partial sums, as in the proof of 
Theorem 4, we conclude that between   and 

z  there is a connection z  , which was to 

be proven.   

Theorem 6. The mean value for integral 

 
:0

,
z

k

L

z a z dz k � , where  a z  is the 

analytical function in the circle z R , 

( R  ) is given by 

   1

:0

z
k k

L

z a z dz z a  .               (14) 

Proof. From the development of analytical 
function  a z  in power series (12) we have 

 
:0

z
k

L

z a z dz   

2
1 0 1 2

1 2 3 1

n
k na a za z a z

z
k k k k n

  
           

 

 7
1

0

k n
n

n

z a 






  . 

Dividing by 1 0kz    and equating multipliers 
with ka , we have 0 0a  , and 

2 3

z z

k k
   

  1n

z

k n


 
 . 

Since this is contradictory, by repeating the 
procedure as in the proof of Theorem 5, we 
conclude that formula (14) is valid for 

z R   .   

Note that the last property also applies to 
multimorphic analytical functions , ,nz z  
ln ,Artanhz z ... which are to a certain extent 
unambiguous because the mean values are 
inside the circle z R   . 

For iterations it is also important to find a 

formula for the integral    
:0

z

L

f z g z dz , of 

the product of two analytical functions. 
Assume that      a z f z g z . Then, 

according to formula (7), we have 

       
:0

,
z

L

f z g z dz f g z           (15) 

for z R   .  

However, if part of the integral in formula (15) 

is solved, for example integral  
L

g z dz , then 

we need some kind of Second mean value 
theorem for a complex integral. 

Theorem 7 (The second mean value theorem 
for a complex integral) For an integral of the 
product of two analytical functions  f z  and 

 g z , along the open path L  which connects 

points 0 0z   and z  and which is contained in 

the circle of radius z R  valid formula 

       

   

1

2

:0 :0

:0

,

zz

L L

z

L

f z g z dz f g z dz

g f z dz





 



 


          (16) 

where the modules 1 2, ,z z  are inside the 

circle z R . 

Proof. If in (15) we perform a grouping in the 
following way 

        
:0

,
z

L

f z g z dz f g z z      

in brackets, we again have the case from 
Theorem 3, but with some   which is different 
from z . Without loss of generality, we can 
assume that   1f z  . Then 
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   
1

1

:0

,
z

L

g z g z dz z   , 

so 

       
1

:0 :0

zz

L L

f z g z dz f g z dz   

where 1, z z R   . Analogously, if in (15) 

we make a grouping 

        
:0

,
z

L

f z g z dz g f z z     

we again have in brackets structure of the 
mean value for integral, but now to some point 

2z  for which also applies  

       
2

:0 :0

,
zz

L L

f z g z dz g f z dz    

where 2z z R  .   

Note that the same is true for multiple products  

           

     

     

     

1

2

0

0

0

2 ...

z

z

z

f z g z h z dz f g h z

f g z h z dz

f g h z dz

f g h z

  



 

  

 

 

 

 







 

where all intermediates 1 2, , , ,z z    per 

module are less than z R . 

 
CONCLUSION 

When we solve the integrals used in 
iterations, using the above theorems, we can 
calculate successive double integrals. 

 For a constant  a   we have 

   

   

2

:0 :0 :0 :0

2

:0

,
2

z z z z

L L L L

z

L

a z dz a z dz dz

z
a zdz a 

 
  

 

 

   


 

z R   . 

 Based on the previous case, we have 

   2 2

:0 :0 :0 :0

z z z z

L L L L

a z dz a z dz      

   
2

2

:0 :0

.
2!

z z

L L

z
a z a dz    

If we do not change the upper limit z  of 
integral, then   is constant, ( )a   is also 
constant and according to the second 
mean value theorem, for , z R     

we get 

   

   

2
2

:0 :0

2
2

:0 :0

2!

2!

z z

L L

z z

L L

z
a z a dz

z
a a z dz









 

 
 

 

   

   

2
2

:0 :0

4

2!

.
4!

z z

L L

z
a a dz

z
a a

 

 





 
 

In this way, the double integrals in the 
iterations are treated as in the real region, only 
that the arguments of the mean values are not 
on the segment [0, ]x , but are in some circle 

z R . 
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