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Abstract 

The theory of complex differential equations represents an important mathematical discipline both from the 
theoretical point of view and from numerous applications. Its development was equally encouraged by mathematicians, 
physicists and engineers. By using the series-iterations method we have explained how the obtained results could be 
applied to the complex linear homogeneous first order and canonical complex linear second order differential 
equations. We have also formulated some conclusions about the determination of zero solutions of these equations. 
Even if that equation had no solutions we have found a particular integral which had zero for some choices of the 
integration constants. 
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INTRODUCTION AND PRELIMINARIES  

The ordinary differential equations have 
been applied in many fields such as physics, 
engineering, technology, biology, chemistry 
and other sciences. This is a very powerful 
mathematical tool for analyzing the 
relationship between various phenomena in 
nature. Techniques to solve differential 
equations or systems of differential equations 
are not always straightforward.  

The iterations are mainly used to solve 
differential equations with completely 
determined, relatively elementary and 
continuous coefficients. We noticed that there 
is no theorem on the existence of a solution 
which requires that the coefficients of the 
equation must be specifically determined. 
They only require continuity and Lipschitz’s 
condition. This created a common practice that 
the coefficients in the differential equation 
must be very concrete, and with well-
established operations therein. In fact, this is 
just a psychological deception, because 
iterations can be performed well even when 
the equation coefficients are general. Then, for 
the linear differential equations, nice 

symmetric iterations are obtained, which are 
transformed into series. This classic method of 
iterations is called a series-iteration method. 

Differential equation of first order. The 
complex canonical first order differential equation, 
with an analytical coefficient  a z  

   dw
a z w z

dz
                       (1) 

is equivalent to an integral equation 

   
0

0( )
z

z

w z a z w z dz w  ,                   (2) 

which means that  w z  is the solution of the 

starting equation if and only if it is the solution 
of the integral equation (2). 

Based on the integral equation (2) we define a 

iteration sequence     nw z : 

         
0

1
0 , 1,2,3,...

z
n n

z

w z w a z w z dz n       (3) 

with initial conditions      0
0 0 0w z w z w  . 

We choose the initial approximation 
arbitrarily, but so that    0w z  is a continuous 
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function in the domain of iterations and that it 
approximately satisfies the equation. For 
members of the sequence we have 

           
0 0

1 0
0 0 1 ,

z z

z z

w z a z w z dz w w a z dz
 

    
  

   

         

     

0

0 0 0

2 1
0

2
0 1 ,

z

z

z z z

z z z

w z a z w z dz w

w a z dz a z a z dz

  

 
   

  



  


       
0 0 0

0
0

-integrals

( )
z z zn

n k

k z z z

k

w z w a z a z a z dz


    



.       (4) (4) 

and so on.  
This mathematical construction makes sense if 

a series of iterations     nw z  converges. It is 

easy to check that integral operator (3) is a 
contraction. We will use a modulus apparatus, 
because it is only possible to make estimates in 
the set of complex numbers. 
First of all, assume that in the domain G , in 
the z -plane, there is a finite curve L  on which 
we integrate. Since  a z  is an analytic 

function in G , its modulus is bounded, that is, 
there exists a real 0M   such that  a z M  

for all z G . To facilitate calculations, we 
translate the coordinate system by assuming 
that 0 0z  . Since 

         

  

1 0
0

0

0 0max

z

z G

w z w z w a z dz

w a z z M w z


 

 


  

by mathematical induction it is easy to prove 
that 

             

 

  
 

0

1
0

0 0 0

-integrals

0 0!

0

max
!

.
!

nz

z z z
n n n

n

na z dz n

n z G

n

w z w z w a z a z a z dz

z
w w a z

n

M z
w

n





 


 



  



Now we construct a functional series 

           0 1

1

n n

n

w z w z w z






                  (5) 

which is majored by series 
 

0
0 !

n

n

M z
w

n




 . 

Based on d’Alembert criterion he converges, 
and according to Weierstrass criterion the 
functional series (5) converges absolutely and 
uniformly to the function  w z . Thus, the 

functional series (5) converges. It follows that 
to the same limit function converges a series of 
its partial sums, the n th partial sum is n th 
iteration    nw z . Hence      lim n

n
w z w z


 . 

From the definition of a sequence of iterations 
(3), taking limit as n  we obtain 

         1
0

0

lim lim , 1,2,3,...
z

n n

n n
w z w a z w z dz n

 
  

i.e.      0

0

, 1,2,3,...
z

w z w a z w z dz n    . 

Therefore,  w z  is the solution of the integral 

equation (2), and because of the equivalence it 
is also solution of the starting complex 
differential equation (1). Since, according to 
Picard's theorem, the limit of a series of 

iterations     , 1,2,...nw z n   is unique, the 

solution  w z  is equally unique. This means 

that    w z w z   for all z G . Based on this, 

it follows that the solution of complex 
differential equation (1) has the series-iteration 
form of multiple integrals, i.e. 

       
0 0 0

0
0

-integrals

.
z z z

k

k z z z

k

w z w a z a z a z dz




    



        (6) 

Note that the function  w z  is analytic 

solution of (1) in G . 
Complex differential equation of second 
order. Complex canonical linear 
homogeneous differential equation of second 
order  

   
2

2
0,

d w
a z w z

dz
                     (7) 

with analytical coefficient  a z , according to 

Picard-Poincarré principle, has an analytical 
solution  w z , which is a continuous function 

and satisfies Cauchy-Riemann conditions. In 
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order to determine the solution of the equation 
(7) and then the number of zeros and the 
location of the zero solutions (this is very 
important in engineering), the equation (7) is 
solved by the series-iterations method by 
determining the first integral from the normal 

 

form    1

0

zdw
c a z w z dz

dz
   . Hence  

      2
1 2

0 0

,
z z

w z c z c a z w z dz               (8) (8) 

where the integration constants 1c  and 2c  are 
complex number. If this solution is 
normalized, for    0 1, 0 0w w   we obtain 

1 1c   and 2 0c  , we got one particular integral 

 1w z . For    0 0, 0 1w w   we have 1 0c   

and 2 1c  , that is, we obtain another particular 

integral  2w z . The integrals  1w z  and  2w z  

are linearly independent, since, it is well 
known, a complex second order differential 
equation has two linearly independent 
particular solutions. We mark them by 

      2
1 1

0 0

1 ,
z z

w z a z w z dz                     (9) (9) 

      2
2 2

0 0

.
z z

w z z a z w z dz                  (10) (10) 

If with 

         1 2
1 1

0 0

1 , 1,2,..,
z z

n nw z a z w z dz n      (11) 

         1 2
2 2

0 0

, 1,2,..,
z z

n nw z z a z w z dz n     (12) 

we define a sequences of iterations     1
nw z  

and     2
nw z , with initial approximations 

   0
1w z ,      0

1 10 0 1w w   and    0
2w z , 

     0
2 20 0 0w w  , then, completely 

analogously to the differential equation (1), it 
can be shown that the equation (7) has two 
linearly independent particular integrals in the 
form  

       2 2
1

0 0 0 0 0

 double integrals

1
z z z z

k

k

k

w z a z dz a z dz






     



     (13) 

 2w z z   

       2 2 2

1 0 0 0 0 0 0

 double integrals

1 .
z z z z z zn

k

k

k

a z dz a z dz za z dz




       



(14) 

Functions (13) and (14) are the sums of the 
series-iterations of multiple double integrals. 
These are analytic solutions of equation (7) in 
the domain G . 
We have shown in [1,2] that these functions 
are very similar to Euclidian’s sine and cosine, 
naming them oscillatory complex sine and 
cosine with base  a z , i.e. 

   1 cosa zw z z ,    2 sina zw z z  and we 

approximated them by formula 

      

   

  
 

1

2

cos cos ,

sin
sin .

a x

a z

w z z z a z

z a z
w z z

a z

 

 
 

Further, with    F z z a z  we denoted a 

function of the frequency and shown that the 
zero solutions of  1w z  and  2w z  are 

approximately in solutions of equations 

   2 1 , 1,2,...
2

z a z n n


    for cosine and 

  , 0,1,...z a z n n   for sine solution. 

 

EXAMPLES 

For complex functions,   0w z   and 

  0w z   are not defined, the functions  w z  

and  w z  are somehow equal, they don’t 

have a graph, but they have a common 
modular surface 

 

   2 2

( , ) ( , ) ( , )

, , .

F x y w z u x y iv x y

u x y v x y

  

 
 

It can only be zero if  | | 0w z  . If 

( ) ( , ) ( , )w z u x y iv x y   is analytical and has a 

zero, then they are isolated, so   0w z   

implies ( , ) 0u x y  , ( , ) 0v x y  . Then there is a 
possibility for some partial oscillation, at least 
some of the parts  ,u x y  or  ,v x y . 

Existence of zeros in a complex area is a 
substitute for oscillatory in the real case. The 
importance of zeros of complex function is not 
only in the replacement of oscillatory, but 
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more so in the fact that the number of zeros is 
equivalent to the rank growth. This is known 
from real oscillations (see [3,4,5,6,7]). 
Namely, the real differential equations of 
second order    '' 0y x a x y  , under 

conditions:   0a x  , ( )a x  is continuous on 

 0,  and satisfies Lipschitz condition, 

integral 
0

( )a x dx


  diverges, defines oscillatory 

function. 
In a canonical complex second order 

differential equation (7), if  a z  is a 

polynomial, we can expect n  oscillations 
depending on the degree of polynomial  a z . 

If  a z  is an exponential function, then there 

are countless zeroes throughout the z -plane. 
In the following examples, by series-

iteration method, for some special cases of 
complex equations of the second order, we 
have tried to determine the zeroes of the 
solution. Even if that equation had no solutions 
we have found a particular integral which had 
zero for some choices of the integration 
constants. 
Example 1. Consider the canonical complex 
differential equation  

 
2

2
2

0
d w

k w z
dz

                        (15) (15) 

for which   2a z k  is a real constant. By 

series-iteration method we obtain two 
particular solutions 

 

       

2 2 2 2 2 2
1

0 0 0 0 0 0

2 4 6

1

1 cos
2! 4! 6!

z z z z z z

w z k dz k dz k dz

kz kz kz
kz

   

     

      



  

 

       

2 2 2 2 2 2
2

0 0 0 0 0 0

3 5
11 1

sin .
3! 5!

z z z z z z

w z z zk dz k dz zk dz

kz kz
kz kz

k k

    

 
     

  

      



  

Hence, according Euler’s formula 

   1 cos
2

ikz ikze e
w z kz


     

   1
cos sin cos sin

2
ky kye kx i kx e kx i kx       

cos sin
2 2

cos cosh sin sinh

ky ky ky kye e e e
kx i kx

kx ky i kx ky

  
 

 

 

and 

   2

1 1
sin

2

ikz ikze e
w z kz

k k i


   

   1
cos sin cos sin

2
ky kye kx i kx e kx i kx

ki
       

 

1
cos sin

2 2

1
sin cosh cos sinh

ky ky ky kye e e e
kx i kx

ki

kx ky i kx ky
k

   
  

 

 

 

The question here is whether  1w z  and  2w z  

have zeros? From  1 0w z   follows 

   1 1, 0 ,u x y v x y  , that is, cos cosh 0kx ky   

and sin sinh 0kx ky  . We conclude that 

solution  1w z  has only isolated zeros on x -

axis and in points 
 2 1

, 1,2,...
2

n
x n

k


  , 

k const . For zeros of second solution  2w z  

should apply,    2 2, 0 ,u x y v x y  , i.e. 

sin cosh 0 cos sinhkx ky kx ky  . Hence, 
n

x
k


 , 

0,1,2,n  and 0y  . Therefore, the zeros of 

solution  2w z  are again on the x -axis and in 

points , 0,1,2,
n

x n
k


   . Obviously, the 

particular solutions of the canonical complex 
second order differential equation (7) have no 
common zeros.  
Remark. A very important issue is the zero of 
the general solution 

     1 1 2 2 0w z c w z c w z   . 

This problem has many possibilities because it 
depends on integration constants.  
For example, let us find the solution of the 
equation (15) in the form   rzw z e , where r  

is the complex constant to be determined. 

Substituting ,rzdw
re

dz


2
2

2
rzd w

r e
dz

  in (15) we 

obtain the characteristic equation 

 2 2 0rze r k  . It follows that r ki  . We got 

a new system of particular integrals 
    1 2,ikz ikzw z e w z e    . 

Since    1 cos sin 0kyw z e kx i kx     and 

   2 cos sin 0kyw z e kx i kx    , it follows that 
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 1w z  and  2w z  have no zeros. However, 

we can determine a linear combination that 
would have zeros. From 1 2 0ikz ikzc e c e  , i.e. 

2 2

1

ikz c
e

c
  , we get 2

1

1
ln

2

c
z

ik c

 
  

 
. Hence, 

0z   for 1 2c c  . So, from a linear 

combination   1 1 12 sinikz ikzw z c e c e ic kz     

we get a solution that obviously has zeros. 
Example 2. Let  a z z x iy   . For canonical 

complex differential equation (7), that is from 
(8), we obtain equation 

    2
1 2

0 0

.
z z

w z c z c zw z dz      

By choosing the constants 1c  and 2c  from the 
particular integrals, i.e. solutions (9) and (10), 
by series-iteration method we obtain  

  2 2 2
1

0 0 0 0 0 0

1 ,
z z z z z z

w z z dz zdz zdz         

  2 2 2 2 2
2

0 0 0 0 0 0

.
z z z z z z

w z z z dz zdz z dz           

Solving these integrals we get 

    

   

3 6

1

9

1
3 2 6 5 3 2

9 8 6 5 3 2

z z
w z

z

   
  

 
  



    

   

4 7

2

10

4 3 7 6 4 3

.
10 9 7 6 4 3

z z
w z z

z

   
  

 
  



 

We note that in the denominator of fractions 
we have incomplete factorials. This raises the 
questions: what are the functions  1w z  and 

 2w z , whether they have anything to do with 

functions sin z , cos z , or ze , ize , because, our 
goal is to determine the number of zero and 
the location of zero solutions. When the series-
iterations method can’t determine the zeros of 
the solutions and their locations, we go to 
another way of solving this equation. 
Since the canonical complex differential 
equation of second order (7) has an analytic 
solution, its second derivative is also analytic, 
and then follows  

        

2 2 2

2 2 2

, , , , .

d w u v
i

dz x x

xu x y yv x y i xv x y yu x y

 
 
 

    

Hence we obtain real system of partial differential 
equations of second order  

   

   

2

2

2

2

, , ,

, ,

u
xu x y yv x y

x

v
xv x y yu x y

x


  




  


 

which is not easy to solve. Viewed particular, 
only for 0y  , we have ordinary derivates 

 
2 2

2 2

u d u
u x

x dx

  


 and  
2 2

2 2

v d v
v x

x dx

  


, and 

from here the equations    u x xu x    and 

   v x xv x   . These equations are identical 

to the real canonical equation of the second 
order  '' 0y x xy  , and the solutions 

obtained by the series-iteration method are  

    

   

3 6

1

9

1
3 2 6 5 3 2

9 8 6 5 3 2

x x
y x

x

   
  

 
  



    

   

4 7

2

10

4 3 7 6 4 3

.
10 9 7 6 4 3

x x
y x x

x

   
  

 
  



 

It is known (see [3,4,5,6,7]) that for 0x   
these solutions define non-elementary 
functions  1 cosxy x x ,  2 sin xy x x , which 

are oscillatory according to Sturm's theorems. 
Zero of  1y x  and  2y x  are respectively in 

the solutions of the equations 

 2 1 , 1, 2,...
2

x x n n


    and x x n , 

0,1,2,..n  . Since  a x x  , when x  

grows, then the sine and cosine graphs with a 
base x  have a Prodi character.  
Example 3. Let   za z e . If we solve 

equation (7) by iterations, we have for a 
particular integral  

  2 2 2
1

0 0 0 0 0 0

2 3 4

2 2 2 2 2 2

cos 1

1 .
1! 2 2 3 2 3 4

z

z z z z z z
z z z

e

z z z z

w z z e dz e dz e dz

e e e e

    

     

      


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We see that this series converges rapidly because 

 2
!n  is in the denominator. As we can no longer 

conclude, we solve the differential equation in 

other way. Substituting 
2 2

2 2
''( )

d u d v
w z i

dx dx
  , 

( ) x iya z e   and    ( ) , ,w z u x y iv x y   in (7), 

we obtain system of equations  

   

   

2

2

2

2

, cos , sin 0,

, sin , cos 0.

x

x

d u
e u x y y v x y y

dx

d v
e u x y y v x y y

dx

     

     

 

Hence, for 0y   we get 

   
2 2

2 2
, 0, , 0.x xd u d v

e u x y e v x y
dx dx

     

Since partial derivations are ordinary, we have 
mathematically identical ordinary canonical 
differential equations of second order for ( )u x  

and ( )v x . The coefficient xe , which grows 
rapidly, is continuous, and from the first 
equation of the system, by the series-iterative 
method for particular integrals 

  2 2 2
1

0 0 0 0 0 0

1 ,
x x x x x x

x x xu x e dx e dx e dx         

  2 2 2
2

0 0 0 0 0 0

,
x x x x x x

x x xu x x xe dx e dx xe dx           

we obtain frequency oscillations. For functions 

 1u x  and  2u x  approximate formulas apply  

 

 

1

2

cos cos ,

sin
sin .

x

x

x

e

x

e x

u x x e

x e
u x x

e

 

 
 

It follows that the zero of oscillations are in 
the solutions of the equations 

 2 1
2

xx e n


  , 1,2,...n   and xx e n , 

0,1,..n  . 
 
CONCLUSION 

The purpose of learning the theory of 
differential equations is to solve practical 
problems in which differential equations are 
used. A good researcher or scientist is more 

interested in mathematical modeling of a 
practical problem, i.e., using the easiest 
methods for solving and finding solutions of 
equations.  

We believe that the idea of further 
elaboration of our method is very useful and 
can be purposefully applied to the case of 
complex non-homogeneous linear, 
homogeneous linear higher order differential 
equations with oscillatory solutions, then on 
Bernoulli, Riccati etc. Based on our 
knowledge, the problem of solving differential 
equations for which the coefficients in normal 
form are interrupted remains open. All these 
are ideas that we will deal with in the future. 
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