
International Scientific Conference “UNITECH 2019” – Gabrovo 281

INTERNATIONAL SCIENTIFIC CONFERENCE

15 – 16 November 2019, GABROVO

DATA EXCHANGE USING WSO2 ENTERPRISE SERVICE BUS

Stefan Pitulić1, Slaviša Ilić2, Siniša Ilić1, Dragana Radosavljević1
1Faculty of Technical Sciences, K. Mitrovica University of Priština, Serbia

2Faculty of Informatics and Computing University Singidunum, Serbia

Abstract

In this paper the advantages of using Enterprise Service Bus in data exchange using SOAP and RESTful web
services on particular examples are presented. The WSO2 open source ESB is used to connect different Web services
deployed on different endpoints. Also, the possibility of transformation of messages used in data exchange between
different web services is demonstrated in WSO2 API.

Keywords: ESB, connecting web application to ESB, connecting SOAP and RESTful to ESB.

INTRODUCTION

Many applications from time to time require
the data from external resources and from
various services. Usually this communication is
realised on the Intranet or Internet.

Nowadays, data exchange is performed
using the Web Services, whose main objective
is to provide a service abstraction that allows
interoperability between applications built
using disparate platforms and environments [1].
Such architecture is known as Service Oriented
Architecture (SOA). The data is mainly
exchanged using XML message formats, and
the services are interconnected by a P2P (point
to point) connection. Complexity arises when
there is a need to interconnect a large number
of services within some organisation (company,
clusters of companies, e-government of a
country, etc.).

A typical scenario is that an enterprise runs
hundreds or thousands of applications, which
could be custom built, acquired from a third
party or parts of legacy systems [2]. Then each
service requires one communication interface
with another service. Sometimes it is very hard
and time consuming to establish such (multiple
point to point) connections and reconfigure
active network equipment. Also, there is a
problem how to configure connection and
access security for each new connection node
with the data source.

The solution to this problem is to create a
single interface - a single point of access for all
communication services and this interface is

actually the Enterprise Service Bus (ESB).
With the advent of the ESB there is now a way
to incorporate web services into a meaningful
architecture for integrating applications and
services into a backbone that spans the
extended enterprise in a large-scale fashion [1].
In this way, all web services and applications
can request and receive the data in a supported
message format, and each node (where
applications are deployed) will be connected
via one interface to that unique access point
(ESB).

All messages exchanged between the
services are transmitted via an ESB that acts as
a courier. The ESB can receive messages from
one service, pack and forward them to another
service, and/or return a message (response) to
the sender.

In a general case a set of applications in a
production environment may be built in
different platforms and share data in different
formats. Some applications may be parts of
larger applications that use pre-defined format
of messages and protocols, some other
applications may use modern messages and
protocols. That is the reason why ESB is
designed to handle many different message
formats and protocols and is able to: check
messages, change their format, filter them,
redirect them to different endpoints, process
and change the content of initial messages, etc.

In addition to being the main point of
message mediation, the ESB also provides
security at the highest level, and it also has the

International Scientific Conference “UNITECH 2019” – Gabrovo 282

ability to log events. The ESB enables easy
integration of various services without a need
for a user to write a source code.

Some of the well-known commercial ESB
solutions are: Microsoft BizTalk Server, Oracle
Enterprise Service Bus, IBM Integration Bus.
In this paper, the implementation of the open-
source solution WSO2 is presented.

The main goal of this paper is to present
usage of WSO2 ESB [3] and connecting of the
RESTful (Representational state transfer) and
SOAP (Simple Object Access Protocol) Web
Services on particular examples.

SOAP AND RESTFULL WEB SERVICES

SOAP is a standard protocol proposed by the
W3C [4,5] to interface Web Services, and that
extends the remote procedure call (XML-RPC).
Thus, SOAP can be considered as an evolution
of XML-RPC protocol, much more complete
and mature, that allows to perform remote
procedure calls to distributed routines (services)
based on an XML interface as interfacing
language. Thus, SOAP clients can access to
objects and methods that are residing in remote
servers, using a standard mechanism that makes
transparent the details of implementation, such
us the programming language of the routines,
the operating system or the platform used by
the provider of the service. At the moment,
there exist complete implementations of SOAP
for Perl, Java, Python, C++ and other languages
[6].

SOAP sends and receives messages using
XML [7-9], wrapped HTTP-in headings. The
interfaces of the methods that can be accessed
using SOAP services are specified by a Web
Services Description Language (WSDL) [10,
11]. Using an WSDL file, that it is based on a
neutral language such as XML, the service can
be specified for different languages, so that a
Java client can access a Perl server.

REST is a style of software architecture for
distributed hypermedia systems such as the
World Wide Web. The term Representational
State Transfer was introduced and defined in
2000 by Roy Fielding in his doctoral
dissertation [12, 13]. Fielding is one of the
principal authors of the Hypertext Transfer
Protocol (HTTP) specification versions 1.0 and
1.1 [14, 15].

REST-style architectures consist of clients
and servers. Clients initiate requests to servers;
servers process requests and return appropriate
responses. Requests and responses are built
around the transfer of representations of
resources. A resource can be essentially any
coherent and meaningful concept that may be
addressed.

Although REST was initially described in
the context of HTTP, is not limited to that
protocol. RESTful architectures can be based
on other Application Layer protocols if they
already provide a rich and uniform vocabulary
for applications based on the transfer of
meaningful representational state. RESTful
applications maximize the use of the pre-
existing, well-defined interface and other built-
in capabilities provided by the chosen network
protocol, and minimize the addition of new
application-specific features on top of it.

CREATION OF TESTING
ENVIRONMENT

In order to test the usage of WSO2 ESB
several endpoints with web services are created.
Two SOAP Web Services (WS): “BibService”
and “ServiceB”, each with several functions are
created, and one RESTful WS
(“TutorialService”) with four functions. Also,
two client applications were built: one for
exchanging data with SOAP WS and one for
retrieving, inserting, updating and deleting data
using the RESTful web services.

Initially, client applications were connecting
to the WS directly in a peer to peer fashion and
were used to issue the request to an endpoint
demanding the data from a WS deployed at that
endpoint. Our goal was to modify client
application to issue request to the ESB (not to a
particular endpoint) for a specific WS and
receive data from ESB regardless from which
endpoint data actually were coming from. For
each WS appropriate API had to be developed
and implemented in ESB in order to process
request from a client application, create own
request to the particular endpoint, receive data
from a web service and transfer those data to a
client application in desired format.

For issuing the WS request (beside client
applications we developed) we used also
SoapUI (https://www.soapui.org/) application

International Scientific Conference “UNITECH 2019” – Gabrovo 283

for testing requests and responses to and from
Web Services.

Creation of SOAP Web Services for
experiment 1

All Web Services in the experiment were
created using the Microsoft .Net platform. The
first SOAP WS “BibService” was designed to
exchange data related to small library. The
service was connected to the MS Access
Database and the functions of this WS were:

• AddBook(pWriterID, pBookTitle),
• GetWriterID(pWriterName),
• ShowAllWriters(), and
• ShowWritersAndBooks().
 The second SOAP WS “ServiceB” was

designed to exchange data related to Book
Writers, it is also connected to (another) MS
Access database and there was only one
function:

• GetNumberOfBooks(pWriterID)
The initial architecture for experiment 1 is

presented in Fig. 1.

Fig. 1. Initial architecture of test environment for experiment 1

When implementing .Net web services,
WSDL description for the developed WS can
be downloaded from the web address http://
hostname/WebServiceName.asmx?WSDL. The
WSDL file can be later uploaded to the SoapUI
for proper configuring application to issue
request to that Web Services.

The request and response messages for
function GetWriterID (using parameter
pWriterName = “Desanka Maksimovic”) of
WS “BibService” in SoapUI application are
presented in Fig. 2.

 Creation of RESTful Web Services for
experiment 2

One RESTful WS [16] with four functions:
POST, GET, PUT, DELETE was developed
and deployed. This Web Service was not
connected to the database.

Fig. 2. Request from SoapUI to the function GetWriterId of WS

BibService

Its purpose was to test aforementioned
functions on an initial array of strings. The
initial architecture of test environment for
experiment 2 is presented in Fig. 3

Fig. 3. Initial architecture of test environment for experiment 2

CONNECTING WEB SERVICES TO ESB AND API
COMPONENTS

As stated above, the WSO2 ESB
(https://wso2.com/) solution was used to
connect the Web Services and create needed
APIs. WSO2 uses modified Eclipse version for
building the APIs and configuring endpoints.
Because the ESB has to communicate with
available Web Services, each WS has to be
defined for access within the ESB. For this
purpose, the names of WS, appropriate
endpoints (Web URLs) and WDSL files had to
be defined in ESB API as well as the context of
API. In order to create an WSO2 API, certain
objects called mediators (the building blocks of
each API) were used. Mediators were defined
in the development environment, the number of

International Scientific Conference “UNITECH 2019” – Gabrovo 284

them was large. The mediators used in our
experiments were:

Log mediator - the object that shows events
for all messages that pass through ESB WSO2
API.

Send mediator – the object that sends a
message to some Endpoint. For each message a
Message ID will be assigned.

Property mediator - the container of
variables. It can set or unset the value of some
variable. It can also extract some content from a
message (i.e. from XML, JSON, Envelope,
etc.).

PayloadFactory mediator - the object that
transforms the content of a message.

Call mediator - the object that is used to
send a message outside of ESB-a to some
endpoint. The response is then received back to
the working area (called Synapse) of the WSO2
ESB.

Respond mediator - the object that stops
the message processing within the Synapse and
sends back the message to the client as a
response.

Implementation of the Experiment 1
(connecting SOAP Web Services to ESB)

The goal of experiment 1 was to connect
client application to ESB and create request for
new function GetNumberOfBooks
(pWriterName) (function with the same name
of WS BibService has parameter pWriterID).
The new function (created in WSO2 API)
would firstly call function GetWriterID from
the WS “BibService” and after receiving
response (the value WriterID) would call
function GetNumberOfBooks from the WS
“ServiceB” by passing the parameter WriterID
obtained from “BibService” previously. The

response of the later WS would be then
returned back to the client application.

The architecture of the experiment 1 is
presented in Fig 4.

In this scenario the client application issues
request to the ESB by sending message m1wn
(Message 1 contains WriterName). The ESB
processes the request and sends a message
m1wn (with a Writer Name received from a
client request) to the WS “BibService”;
“BibService” responds and sends back the
message m1id response to the ESB that
contains value of WriterID.

Fig. 4. The final architecture of SOAP services in experiment 1

The ESB transforms received envelope in

message m1id (extracts the WriterID value) and
call another WS “ServiceB” by sending the
message m2id request (with WriterID received
in m1id), receives the response m2nob
(Message 2 Number of Books) and passes the
response to the client application.

In Fig 5, the architecture of created API for
experiment 1 (by combining and configuring
the appropriate mediators) is presented.

From Fig. 5 two sequences of objects can be
seen: first group in upper part with arrows
going from “Resources” object and second
group in lower part with arrows going to
“Resources” object.

Fig. 5. Mediation components of API for experiment 1

International Scientific Conference “UNITECH 2019” – Gabrovo 285

The objects in the first group receive request
from a client application and send the request to
“BibService” WS, and the second group receive
response from “BibService” WS, create request
to “ServiceB”, receive response from
“ServiceB” and send response to a client
application.

The first mediator in the first group is Log
mediator requestLog that logs the request event
and passes the received SOAP envelope to the
Send mediator that forwards the message
content to the endpoint “BibService”.

In the second group of mediators, the
Property mediator WriterID extracts the value
of WriterID from “BibService” response and
passes it to the Factory mediator XMLreq that
creates format of envelope for the Web Service
“ServiceB” and function GetNumberOfBooks.
The created message is then sent to the
“ServiceB” endpoint via Call mediator. The
response message from “ServiceB” is received
by Log mediator responseLog and sent back to
a client application through the Send mediator.
If error occurs, a developer may put mediators
in the red rectangle at the bottom of Fig. 5 to
handle that error.

When API is created, it should be deployed
in ESB server through the Management
Console as Carbon application in a format of
Composite Application Project. The API called
GetNumberOfBooks is thus deployed in the
Management Console.

Implementation of the Experiment 2
(connecting RESTful Web Services to ESB)

The goal of experiment 2 was to connect
client application with existing RESTful Web
Services via ESB and receive required data in

JSON format. A client application needed to
exchange data with ESB instead to exchange
data with each WS deployed on specific
endpoint. In this case, the ESB was configured
to return back response to a client application in
JSON format by reformatting data received
from RESTful WS in XML format.

The desired configuration is presented in
Fig. 6.

Fig. 6 – Desired architecture for RESTful service

In this scenario a client application had to

send request to the ESB (POST request by ID),
the ESB had to forward request to the RESTful
WS, receive response from the RESTful WS
(POST response), transform the format of data
and send back to a client application (POST
response).

Unlike in SOAP Web Services, in RESTful
services the context is more dynamic. There are
GET, POST, and DELETE methods, so more
Resource objects should be defined. In this case
only GET method is described. The task of
GET function in “TutorialService” WS was to
return the string from the string array at
required position in XML format.

Fig. 7. Mediation components of API for experiment 2

International Scientific Conference “UNITECH 2019” – Gabrovo 286

In Fig 7, the architecture of created API for
experiment 2 (by combining and configuring
the appropriate mediators) is presented.

Like in SOAP API, the first group of
mediators receive request from a client
application and send the request to RESTful
WS, and the second group receive response
from RESTful WS and send response to a client
application.

The first Property mediator (ID) extracts
from the context of POST request the parameter
-sequence number of the string in an array, and
passes request to the Log mediator
GetLogByID. Log mediator logs the request
event and passes the received POST request to
the Send mediator that forwards the message
content to the endpoint GetWSRest (it is
actually “TutorialService” WS). The Log
mediator ResponseLog logs the response event
and passes it to the Property mediator
BodyOfEnvelope that extracts the return value
from the received envelope. The envelope is
then passed to the PayLoadFactory mediator
ConvertToJSON, that converts envelope
content from XML to JSON. The Log mediator
PropertyLog logs the content of the parameters
in the envelope, and the created response is sent
back to a client application via Respond
mediator. The request and response messages to
and from this API is tested via SoapUI
application.

CONCLUSION

In modern age many applications can
exchange data with another applications
regardless of platforms they were developed
and implemented using the Web Services (WS).
The advantage of using WS is that data can be
exchanged in a standard format (usually XML
or JSON).

When the number of applications that
exchange data, becomes large, it is easier to
create a single point of access for all
communication services rather than to establish
multiple point to point connections. This
backbone interface is actually the Enterprise
Service Bus (ESB).

In this paper we presented a usage of WSO2,
the open source ESB solution for handling
SOAP and RESTful Web Services and
demonstrated on particular examples how
WSO2 can handle multiple WSs in one request

and response to a client and how WSO2 can
process and transform response messages
successfully.

ACKNOWLEDGMENT
This work has been supported by the Ministry
of Science and Technological Development of
the R. of Serbia under Project No.TR-35026.

REFERENCE
[1] Chappell D. Enterprise Service Bus O'Reilly,

2004.
[2] Menge F. Enterprise Service Bus, Free and open

source software conference, 2007.
[3] Indrasiri K. Beginning WSO2 ESB, First

Edition, 2016.
[4] Box D, Ehnebuske D, Kakivaya G, Layman A,
Mendelsohn N, Nielsen H, Thatte S, and Winer D.
Simple Object Access Protocol (SOAP) 1.1, W3C
Note 08 May 2000, available at:
http://www.w3.org/TR/SOAP, 2019.
[5] Avila P. SOAP: revolucion en la red, Linux
actual, no. 19, pp. 55–59, 2001.
[6] SOAP software, available at:
http://www.soaprpc.com/software , 2011.
[7] Ray E. T, Learning XML: creating self
describing data. O´Reilly, January 2001.
[8] Harold E. R. XML Bible. IDG Books worldwide,
1991.
[9] Box D. Inside SOAP, available at:
http://www.xml.com/pub/a/2000/02/09/feature/index
.html , 2019.
[10] Ryman A. Understanding web services,
available at:
http://www7.software.ibm.com/vad.nsf/Data/Docum
ent4362?OpenDocument&p=1&BCT=1&Footer=1
, 2011.
[11] Vasudevan V. A web services primer, available
at: http://www.xml.com/pub/a/2001/04
/04/webservices/index.html , 2011.
[12] Fielding R. Architectural Styles and the Design
of Network-based Software Architectures, Doctoral
dissertation, University of California, Irvine, 2000.
[13] Fielding and Taylor R. Principled Design of
the Modern Web Architecture, ACM Transactions
on Internet Technology (TOIT) (New York:
Association for Computing Machinery) 2 (2): 115-
150, 2002.
[14] IETF, RFC 1945, available at:
http://tools.ietf.org/html/rfc1945 , 2019.
[15] HTTP/1.1, RFC 2616, available at:
http://tools.ietf.org/html/rfc2616 , 2019.
[16]RESTful service, available at:

https://www.guru99.com/restful-web-
services.html, 2019.

	introduction
	SOAP and RESTfull web services
	CREATION OF TESTING ENVIRONMENT
	CONNECTING Web Services TO ESB and API components
	CONCLUSION
	ACKNOWLEDGMENT
	REFERENCE

