
International Scientific Conference “UNITECH 2019” – Gabrovo 287

INTERNATIONAL SCIENTIFIC CONFERENCE

15 – 16 November 2019, GABROVO

IMPLEMENTATION OF RECORDING LOG EVENTS IN WSO2 ESB
COMMUNICATION

Stefan Pitulić1, Slaviša Ilić2, Siniša Ilić1, Vladimir Veljović3

1Faculty of Technical Sciences, K. Mitrovica University of Priština, Serbia
2Faculty of Informatics and Computing University Singidunum, Serbia

3Faculty of Technical Sciences, Čačak University of Kragujevac, Serbia

Abstract
In this paper the implementation of recording the log of communication events to the external database servers from

WSO2 - open source Enterprise Service is presented. The WSO2 ESB is used to connect different Web services deployed
on different endpoints. Also, the analysis of data from communication events stored in the external databases is
demonstrated using the built-in ESB dashboards.

Keywords: WSO2 ESB communication tracking, ESB logging to an external database, ESB Dashboard

INTRODUCTION

Almost all companies today rely own
business on the software applications they use.
A typical scenario is that an enterprise runs
hundreds or thousands of applications, which
could be custom built, acquired from a third
party or parts of legacy systems [1]. One of the
main tasks then is to make these software
applications and services work together to
produce unified business functionality.

The task of plumbing different software
applications, services, and systems, and
forming new software solutions out of that is
known as enterprise integration. The software
application that is designed to enable that task
is known as the Enterprise Service Bus (ESB).
An ESB enables diverse applications, services,
and systems to talk to each other, interact, and
transact. It acts as the main messaging
backbone in any Service Oriented Architecture
(SOA); it’s lightweight, built on top of open
standards such as web services standards, and
supports commonly used patterns in enterprise
integration known as Enterprise Integration
Patterns [2]

An enterprise service bus (ESB) is a
software architecture construct that enables
communication among various applications.
Instead of having to make each of applications
communicate directly with each other in all
their various formats, each application simply
communicates with the ESB, which handles

transforming and routing the messages to their
appropriate destinations [3].

Different services may be using different
data formats and communication protocols.
Physical locations of services can change
arbitrarily. An ESB can be used to loosen these
couplings between different services and
service consumers [3].

In a such environment it is very important to
keep a log of data exchange events between
applications. A properly configured logging
system is vital for identifying errors, security
threats, and usage patterns [4]. The structured
log data are usually stored in a reliable
database, from where the functioning of the
ESB can be analysed. In order to ensure
business contingency of IT services in a
production environment a redundancy of log
database is usually implemented. Such a
database environment must be reliable and with
help of reporting and analytic tools capable to
produce different usage reports and analyses.

In this paper we described the re-
configuration of default settings of WSO2 – the
open-source ESB in order to enable standard
logging configuration architecture in a
production environment. In more details we
described implementation of logging events and
data using the external database and
implementation of analyses of data exchange
events and usage of Web Services APIs.

International Scientific Conference “UNITECH 2019” – Gabrovo 288

DEFAULT LOGGING SETTINGS IN THE
WSO2 ESB

In the WSO2 ESB server, which needs to
run side by side with the WSO2 ESB Analytics
server, tracking can be enabled for execution of
specific services such as REST and SOAP APIs
and Proxy services, connecting to different
EndPoints where Web Services are deployed.

There are several ways to log events in
WSO2 ESB. WSO2 ESB is a Java application
underneath, and as it is a typical in this type of
application, it uses log4j for logging purposes.
It means that one can manually edit the
configuration file that can be found in
<ESB_HOME>/repository/conf/log4j.propertie
s to suit the architectural needs.

On the other hand, this configuration can be
changed also through the management console.
The changes are persisted in the registry so that
they are available after restarting the server and
overwrite the configuration in the
log4j.properties. The logging configuration
settings can be found in the Configure/Logging
window of the Management Console.

By default, WSO2 ESB store logs on the OS
filesystem and H2 database.

WSO2 log database

H2 database is default database for all
WSO2 ESB products. According to the
recommendation of WSO2 developers, the
embedded H2 database is NOT recommended
in enterprise testing and production
environments. It has lower performance,
clustering limitations, and can cause file
corruption failures [3]. One more disadvantage
of using H2 is that since it stores the data in the
memory, it is volatile. H2 uses the memory
much more than others databases especially
when the size of data increases [5].

WSO2 ESB uses three H2 databases to
store: configuration (regdb), metrics (wso2
metrics), and log analytics (wso2_analytics,
wso2_analytics_processed).

By default, in database regdb the following
properties are set: configuration paths, user
accounts to access WSO2 ESB Management
Console, user roles in WSO2 ESB registry,
history of configuration changes, etc. In the
databases wso2_analytics and
wso2_analytics_processed the encrypted data
needed for analysis are stored, such as: number

of connection requests to some EndPoint,
number of usage of some API, statuses of
requests, etc. In the wso2 metrics the following
data are stored: server load, the memory used,
the load speed of some classes, average
processor load, etc.

 The detailed configuration of database
functioning can be set in the following
configuration XML files: registry.xml (general
configuration of datasources), master-
datasources.xml (the main database
configuration), metrics.xml (general
configuration of metrics), metrics-
datasources.xml (configuration of database for
metric tables), analytics-config.xml (the
analytics dataservice configuration) and
analytics-datasources.xml (configuration of
database for analytics).

WSO2 log files

The log files are typically stored in the
<ESB_HOME>/repository/logs/ folder. The
following types of log files can be found by
default:

• http_access_management_console.log:
the basic information of each HTTP
access to WSO2 ESB.

• patches.log: the log information when
any patches are installed.

• tm.out: Atomikos transaction logs.
• wso2carbon.log: This is the main log file

of WSO2 ESB, and this is the file one can
see when he/she accesses or logs to the
management console. This is the log that
will be checked most of the times.

• wso2-esb-errors.log: all warning and
error messages from wso2carbon.log

• wso2-esb-service.log: specific log from
the proxy services deployed in WSO2
ESB. This is a way to extract the service
logging entries from the general log
(wso2carbon.log).

• wso2-esb-trace.log: more detailed
information about the steps performed in
designed sequences, mediators, or
services when tracing has been enabled
on them.

By default, all these files are configured as
daily rolling log files. These files can be found
with the date attached to the core names of the
files [6].

International Scientific Conference “UNITECH 2019” – Gabrovo 289

A user does not have to open log files in
order to read the logs. They can be accessed by
Management Console. In this case, the log
shown in the console is the carbon_memory
logger, that is by default set in log4j.properties
file, and can be changed by a user.

CHANGING THE DEFAULT LOG WSO2
CONFIGURATION

In a production environment, the typical
architecture for keeping the logs of data
exchange is shown in Fig. 1.

Fig. 1 Architecture of ESB in a production environment

In order to keep track of all logs, a redundant

database cluster (to support running of one
database in the event of failure of another)
should be created. In this experiment we
decided to use and configure MySQL database
in a master-slave replication mode.

Replacement of WSO2 default database

In order to redirect WSO2 ESB to send log
data to MySQL database (instead to send it to
the H2 DB), the configuration file regdb should
be adjusted. The tags related to connection
parameters (url, driverClassName, username,
password) should be set to the MySQL jdbc
values. The content of the adjusted master-
datasources.xml file where the settings of regdb
database can be set is shown in Fig. 2.

In a similar way the settings should be
changed in other configuration files (analytics
and metrics). Before starting the log collection
to the new databases, a set of tables in
databases should be created by running the
predefined SQL query script. The WSO2 ESB
has those scripts with SQL dialects for most of

modern databases that can be found in
<ESB_HOME>\dbscripts. After creation of
new tables, the WSO2 ESB server should be
started with the switch -Dsetup from a terminal
in order to ESB copy data from default H2
databases to the new (MySQL) databases. From
this moment ESB will send log data to the new
MySQL databases.

Fig. 2 The content of adjusted master-datasources file

The collection of log data to the analytics

database in MySQL server is shown in Fig. 3.
In order to obtain the desired architecture of

redundant database servers presented in Fig. 1.
the MySQL master-slave replication
configuration is created [7] by changing the
default settings in mysqld.cnf files of both:
master and slave database servers.

Configuring appender to send desired log
data to the database

In general, WSO2 ESB stores complete log
of all events in the files. Luckily, there is a tool
called appender that can “catch” the content of
a log and transfer it in a separate file or to the
database.

Thus, by default, for data analysis purposes,
the data from various events are sent to the H2
database in encrypted format. These data can be
analysed in WSO2 Analytics server where are
firstly decrypted and presented in the graphical
format.

International Scientific Conference “UNITECH 2019” – Gabrovo 290

Fig. 3 Screenshot of MySQL analytics database

WSO2 ESB APIs that connect different

applications are created using the components
called “mediators”. Some of such mediators
are: Log, Send, Property, Call, Respond etc. In
the WSO2 ESB any service can be built by
connecting afore mentioned mediators. The
task of Log mediator is to allow tracking of all
kinds of data that pass through that mediator.
Using this component is common in most
cases. The log mediator can be configured to
log static and dynamic content and can also be
configured to track properties of other
mediators in an API by using method get-
properties (‘propery_name’). In order to
configure WSO2 ESB to send messages that
pass through a Log mediators of APIs to an
external (MySQL) database server, a new
database and the tables need to be created first.

The appropriate settings must be then set in
the log4jproperty file (/repository/conf) and the
“sql” appender for the log4j.rootLogger must
be added. The following code should be added

to the log4jproperty file for database [8]:

log4j.rootLogger=ERROR,
CARBON_CONSOLE, CARBON_LOGFILE,
CARBON_MEMORY, CARBON_SYS_LOG,
ERROR_LOGFILE, SQL
log4j.appender.sql=org.apache.log4j.jdbc.J
DBCAppender
log4j.appender.sql.URL=jdbc:mysql://localh
ost/LOG_DB
Set Database Driver, uname and pass
log4j.appender.sql.driver=com.mysql.jdbc.D
river
log4j.appender.sql.user=root
log4j.appender.sql.password=root
Set the SQL statement.
log4j.appender.sql.sql=INSERT INTO wso2-
esb-api VALUES ('%x', now()
,'%C','%p','%m')
Define xml layout for file appender
log4j.appender.sql.layout=org.apache.log4j
.PatternLayout

In order to test sending the log to a MySQL
database from a running WSO2 Web Service
(WS) API, the appropriate log data are stored in
MySQL database (Fig. 4) by issuing the WS
request from SoapUI application (Fig. 5).

Fig. 4 Log data in MySQL database received by getNumberOfBooks API

International Scientific Conference “UNITECH 2019” – Gabrovo 291

Fig. 5 Request issued from SoapUI to API

getNumberOfBooks of ESB

This setup with running log appender can
lead to performance reduction of ESB. One
way to handle the performance issue is to
define a large buffer to store the log data. In
this way the data will be stored in a database
when a buffer is almost full rather than to insert
data on each log event. The size of a buffer can
be set through the log4j method “bufferSize”
where the number to be set is actually the
number of log events to be stored in a buffer.
Another way for achieving better performances

is to filter the log events by keywords
(log4j.appender.sql.filter.01.String ToMatch=
“message”) that will enable inserting only the
filtered log events to a database. The similar
approach can be used to capture Log mediator
messages to a new file instead to a new
database.

IMPLEMENTATION OF WSO2 ESB
DATA EXCHANGE EVENTS ANALYSES

As already mentioned above, in order to
connect external database server for analytic
purposes to WSO2 ESB, one has to change
settings in analytics-datasources.xml and in
metrics-datasources.xml files, and then to run
SQL script from <HOME
ANALYTICS>\dbscripts to copy data from
existing H2 database. After these steps, the
ESB Analytics Dashboard will use data from a
new external database for data analysis. Which
data can be used for analytical purposes must
be configured in the Management console.

One of the typical dashboard screen is
shown in Fig. 6. From the figure it can be seen
the overview of all web services in last 30 days,
total number of web services requests and
responses, the average time of responses,
number of requests to a different APIs, number
of requests to different EndPoints, statuses of
requests, etc.

The more detailed analysis can be obtained
by selecting appropriate menu items on the left
side of the dashboard.

Fig. 6 Dashboard ESB Analytics Overview

International Scientific Conference “UNITECH 2019” – Gabrovo 292

Fig. 7 Dashboard ESB Analytics for Web Service BibService

The list of request messages to the
appropriate endpoints with the graphical
statistics of the statuses of requests, message
count and latency for the Web Service can be
seen in Fig. 7 by using data from external
MySQL database server.

In the details pane of the dashboard it can be
seen the following data related to each request:
ID of the message, the URL of web service
requested, timestamp of the issued request and
the status of request.

CONCLUSION

Nowadays modern applications frequently
exchange data in a controlled way using the
Web Services. Usually it is easier to create a
single point of access for all communication
services rather than to establish multiple point
to point connections. This backbone interface is
the Enterprise Service Bus (ESB).

In a such environment it is very important to
keep a log of data exchange events between
applications. A properly configured logging
system is vital for identifying errors, security
threats, and usage patterns.

Some open-source ESB solutions by default
do not offer professional setup of log events
storage, but enable modification of initial setup.

In this paper we have shown that by
modification of initial setup of WSO2 – open
source ESB, we configured it to track
communication events in redundant external
database servers.

Using the built-in analysis tool (dashboard)
we were able to create various reports from
recorded data from the external database and
make analysis of: statistics for defined period
and detailed log of each request.

ACKNOWLEDGMENT
This work has been supported by the Ministry
of Science and Technological Development of
the R. of Serbia under Project No.TR-35026.

REFERENCE
[1] Menge F. Enterprise Service Bus, Free and open

source software conference, 2007.
[2] Indrasiri K. Beginning WSO2 ESB, First

Edition, 2016
[3] WSO2 Enterprise Service Bus, Version 5.5.0,

2016.
[4] ESB Documentation, 2017.
[5] Kabakus A. T, Kara R, A performance

evaluation of in-memory databases, Journal of
King Saud University – Computer and
Information Sciences, (2017) 29, 520–525,
available at:
https://www.sciencedirect.com/science/article/pi
i/S1319157816300453, 2019.

[6] Prieto F, Ramón E, Lázaro G. WSO2
Developer’s Guide, 2017.

[7] MySQL DB Replication, available at:
https://medium.com/@madumalt/mysql-db-
replication-63786ac8241e, 2019.

[8] Configuring Apache Log4j, available at:
https://logging.apache.org/log4j/log4j-
2.2/manual/configuration.html, 2019.

	introduction
	Default logging settings in THE WSO2 ESB
	Changing the default log WSO2 configuration
	Implementation of WSO2 ESB data exchange events ANALYSES
	CONCLUSION
	ACKNOWLEDGMENT
	REFERENCE

