
International Scientific Conference “UNITECH 2019” – Gabrovo 315

INTERNATIONAL SCIENTIFIC CONFERENCE

15 – 16 November 2019, GABROVO

GENERATING AND SOLVING OF THE MAZE BY USING KRUSKAL’S
AND FLOYD’S ALGORITHM

Suzana Marković

Academy of Business Applied Studies Belgrade, suzana.markovic@bpa.edu.rs

Jasmina Novakovic Anja Marković
Academy of Business Applied Studies Belgrade Faculty of Electrical Engineering, Belgrade

Abstract
Graphs are used in computer systems as models for presenting certain objects and mutual relationships among

them. The simplest data structure, which is used for presenting graphs in computer programs, is the adjacency matrix.
This matrix enables easy manipulation of nodes and edges so it is used in the realization of the maze. A maze implies a
set of connected passages in which movement is possible in a space filled with obstacles (walls). Following conditions
should be determined when generating the maze: set of maze's nodes, initial state - entrance to maze and end state - exit
from maze. Kruskal algorithm was used to generate the maze. In solving the maze, it is necessary to determine a set of
possible actions - the path choice (the next node of the maze) at each step and the transition determined by the relations
between the maze's nodes. Finding the best path to exit the maze was implemented using the Floyd algorithm.

Keywords: Graph, spanning tree, adjacency matrix, Kruskal’s algorithm, Floyd’s algorithm, maze.

INTRODUCTION

 Algorithm is one of the basic building
blocks for the implementation of program
systems [1]. It is a precisely defined procedure
realized by a final set of commands, which a
computer should execute for solving a
problem. Algorithm analysis determines the
use of computer resources. The tendency is to
minimize the most expensive resources –
execution time and memory requirements.

Graphs are used in computer systems as
models for presenting certain objects and
mutual relationships among them. They can be
used in numerous ways: maps of cities and
roads among them, maps of city transportation
with marked stops, the connection of
computers in a computer network, pages of a
certain website connected by hyperlinks, etc.
Graphs are, in mathematical terms, binary
relations which are visually presented by
points (nodes) and lines (edges), which are
used to connect those points. More precisely, a
graph is a couple of sets (V, E) –> G = (V, E),
where V is a final blank set, the elements of
which are nodes (vertices) (also called nodes
or points), and set E presents binary relations

of elements of set V, the elements of which are
called (edges) (also called links or lines).

One of the basic operations in the graph is
the movement through a series of nodes
connected with edges. The undirected simple
graph is connected if there is a path between
every two nodes. Otherwise, it consists of
more than one connected component. A tree is
a special case of a graph, i.e. the simplest type
of connected graphs (by removing any line
from the tree, it becomes disconnected). A
graph in which all components are connected
stand for free trees themselves is called a
forest.

G is an undirected, connected graph.
Spanning tree of the graph G is any tree which
contains all the nodes and only a certain
number of edges of graph G, is required for
connecting all nodes so that there is no loop (a
loop is simple path which starts and ends in
one node).

In the weighted graph, all edges have their
weight which is expressed numerically. If
(V,T) is a connected subgraph of the weighted
graph G = (V, E), whose total weight of edges
is the least, then (V,T) is a free tree.

International Scientific Conference “UNITECH 2019” – Gabrovo 316

The simplest data structure which is used
for presenting graphs in computer programs,
and which enables easy manipulation of nodes
and edges is the adjacency matrix – a two-
dimensional series, in which the numbers of
rows and columns are equal to the number of
graph nodes. Graph G has n nodes, which are
numerated from 1 to n [2]. This graph can be
presented by a square matrix M, of dimensions
nxn, the members of which m[i,j] have binary
values m[i,j]=1, if edge (i,j) belongs to a set of
edges, and m[i,j]=0 if the edge does not belong
to set of edges of graph G.
The rest of this paper presents the way of
generating and solving the maze by using the
graph theory and algorithms, which solve the
problems of generating trees, and passing
through it by choosing the most favorable
paths.

INTRODUCTION TO THE MAZES

A maze implies a set of connected passages
in which movement is possible [3] in a space
filled with obstacles (walls). Every passage
has one or more fields and two ends. One field
is the entrances, and another is the exit of the
maze. The entrance, exit, ends of the passage,
as well as the fields, which are mutual for both
passages made up the nodes of the maze. The
aim is to find the way from the entrance to the
exit through maze nodes. In generating the
maze, it is necessary to determine the
following states: set of maze nodes, the initial
state – entrance in the maze and the final state
– exit from the maze. In solving the maze, it is
necessary to determine the set of possible
actions – the choice of the path (the next maze
node) in each step and the transitions, which
are determined by links between the maze
nodes.

Every classical rectangular maze can be
presented by a graph so that the maze nodes
represent graph nodes, and edges comprise the
paths (passes) through the selected nodes.
Mazes do not have unconnected parts because
there is a unique path between every two
points, so the appropriate graph which fits
them is actually a tree which can be considered
as a maze outline scheme.

Entertainment and brain training may be
considered as primary goals of maze
application [4]. Logic mazes are special mazes

with specifically defined rules altering the
usual way of maze solving. Also, there are life
size mazes as tourist attractions and finally
application of mazes can be found in the video
game and film industry.

According to Walter D. Pullen [4], there are
seven categories mazes can be classified by:

• dimension
• hyper-dimension
• topology
• tessellation
• routing
• texture
• focus
According to dimension, there are two-

dimensional mazes (rectangle) and three-
dimensional (cube). This paper focuses on
two-dimensional mazes.

Hyper-dimension category refers to the
dimension of the object the solver moves
through the maze. The topology category
divides mazes according to the space they
exist in (normal and plainair). The tessellation
categorization divides mazes into several
groups according to the shape of their basic
units they are composed of – cells (orthogonal,
omega, theta, crack, fractal). The routing
category classifies mazes into several
subcategories according to the properties of
their passage (path) system (perfect, braid,
unicursal, sparseness). Identifying a maze’s
texture can be done by observing the maze or
by expressing it using mathematical evaluation
(symmetry, river).

Walter D. Pullen uses focus category to
distinguish various methods of maze creation.
There are two basic algorithmic ways: wall
adders (focusing on wall positioning) and
passage carvers (concentrate on paths and cell
positioning).

There are two basic ways of maze
generation: algorithmic and non-algorithmic.
Algorithmic methods create mazes according
to a predefined step order. This paper puts
focus on graph based algorithms. Graph based
maze generation algorithms create mazes by
building a spanning tree.

KRUSKAL’S AND FLOYD’S
ALGORITHM

The minimum spanning tree for the given
weighted graph G = (V, E) finds a subset of

International Scientific Conference “UNITECH 2019” – Gabrovo 317

edges T, so that subgraph (V,T) is connected
and the total weight of edges in T is minimum.
It is called minimum because it has the lowest
price, and spanning because it encompasses all
nodes of the given graph G.

A graph can have numerous spanning trees,
the structures of which are completely
different. However, the aim is to find a
spanning tree with the lowest possible price.
There are numerous algorithms which solve
that successfully. The property of the graph
division enables a gradual selection of its
edges which belong to the minimum spanning
tree. One of the representatives of such an
approach is Kruskal’s algorithm [5]. This
algorithm is applied in real life in numerous
situations: in computer networks, it finds the
shortest path between two nodes (computers)
taking into consideration the type of the
connection (telephone line, optic cable, etc.);
in transport infrastructure, it finds the shortest
path between two nodes (city, street)
considering the type of the path, etc.

The application of Kruskal’s algorithm for
the purposes of creating a made will be
explained in more detail.

Aside from that, one of the basic algorithm
problems related to graphs is finding the
shortest paths between its nodes. The problem
consists of the fact that for the given node s in
the weighted graph G to determine the shortest
paths from that node to all other nodes in the
graph, whereby the complexity of finding the
shortest path from the given node s do another
given node does not become more simple in
relation to the previous one. In other words,
the problem of the shortest paths between all
nodes comes down to finding the shortest
paths between every two nodes of the
weighted graph. One of the representatives of
such an approach which is used in this paper is
Floyd’s algorithm [2]. This algorithm finds its
application in determining the shortest
distance between all nodes (cities) in a certain
transport network.
The application of Floyd’s algorithm for the
purposes of solving the maze is presented in
more detail as follows.

GENERATING THE MAZE

A graph as a data structure is used for
presenting the maze in this paper that is its

matrix representation, presented in the form of
the adjacency matrix. If between nodes iij
there is a branch, then m[i,j]=1; otherwise,
m[i,j]=INT_MAX, except on the main
diagonal, where m[i,j]=0 because those
elements present edges from the nodes to
themselves.

Maze realization is performed in C
programming language. The following options
are available from the defined menu:

1. Creation of the maze
1.1. Creation of the maze by entering

coordinates of the passage
1.2. Generating of the maze
2. Creation of the passage
3. Creation of walls
4. Adding nodes
5. Deleting nodes
6. Destroying mazes
7. Solving mazes
7.1. Path from entrance to exit
7.2. Path between certain coordinates
8. Printing of maze
8.1. Maze printing on the standard output
8.2. Printing maze to a file
9. Program abortion

For generating the maze, two options are

used. The first option enables the creation of
the maze by entering coordinates of the
passage through a standard entrance. The
second option is more significant for the
purposes of this paper and it enables the
generating of the maze by using Kruskal’s
algorithm.

In Kruskal’s algorithm, it is started from the
forest of unconnected nodes of a graph, of
which every node presents a specially
connected component, without any edge, and
then an edge is added one by one until the
forest becomes a tree [6]. For the given tree, it
is guaranteed that it is a minimum spanning
tree. Then, an edge is chosen by applying the
function rand(), by choosing four pseudo-
coincidental numbers which signify
coordinates of the two nodes in the adjacency
matrix. If both nodes are in the same
connected component, an edge is rejected so
that the cycle disappears from the graph, and
in contrast, an edge is joined to the set of
graph edges. An algorithm ends when n-1 edge
is joined because then all nodes are in one

International Scientific Conference “UNITECH 2019” – Gabrovo 318

connected component. At the end of this
option, through a standard entrance to the
maze, coordinates of entrance are entered, as
well as all the coordinates of all exits from the
maze (if there are several).

For the realization of this algorithm, sets
must be used. An auxiliary node structure is
used, realized by the following code (1):

typedef struct node {
int id;
struct node *parent;
struct node *left;
struct node *right;
} Node; (1)

Through the given structure, every graph

node in the beginning is presented in the form
of the structure node. When an edge between
two graph nodes is found, those two nodes are
entered into the same connected component,
that is in the same disjunctive set, so that
certain nodes (with the chosen Ids) are
connected by an auxiliary node which presents
a new root of the tree in which the given two
nodes can be found. The algorithm ends when
all initiated nodes are entered into one tree.
The realization of an algorithm is presented by
the following code (2).

pair1 = parent(mat[i][j]); // the first selected
node
pair2 = parent(mat[x][y]); // the second
selected node
if (pair1->id == pair2->id) continue; // in the
same connected component
else {
pair = malloc(sizeof(Node));
pair->parent = NULL;
pair->id = n++; cnt++; //cnt is a node
counter; n is id of a node
pair->left = pair1;
pair->right = pair2;
pair1->parent = pair;
pair2->parent = pair;
int no1 = (x*lav->column) + y;
lav->mat[number][no1] = lav-
>mat[no1][number] = 1; // branch becomes
valid
} (2)

According to the menu defined on the
previous page, what follows are options for

additional adjustment of the maze, the addition
and deleting elements, as well as for
destroying the maze. After creating the maze,
the menu options (2. Creation of the passage
and 3. Creation of the walls) serve for adding
the passage and for adding the walls in the
maze. That is achieved through simple
positioning of elements of the adjacency
matrix, determined by the entered coordinates,
on the value of 1 for adding a passage, that is
the value of 0 when creating the wall.

The next two options of the defined menu
provide the opportunity of adding and deleting
nodes. When adding nodes (option 4) in the
graph, it is necessary to allocate the new types
and columns in the adjacency matrix,
considering that it must be squared, whereas
when deleting nodes (option 5) the column in
which the node is located is being deleted. The
created maze can be destroyed by choosing
option 6 from the defined menu. Destroying
the maze (option 6) is performed by
deallocating the adjacency matrix and other
required structures created when generating
the maze, like the series of exits from the maze
is dynamically allocated.

SOLVING THE MAZE

In order to find the exit from the maze, two
options are used. One option is to find a path
to one of the existing exits from the maze.
Another option is to find the path between two
random nodes in the graph. In both cases,
Floyd’s algorithm is used [2]. Floyd’s
algorithm is used for finding the shortest
distance between all sets of nodes in the graph
and reconstruction of the discovered shortest
paths. For the realization of this algorithm, it is
necessary to allocate a new matrix of the
predecessor T, which has the same dimension
as the adjacency matrix. Element t[i,j]
identifies the node which is a direct
predecessor of the node j on the shortest path
from node i. If there is no path between nodes
i and j, then t[i,j]=0. A copy is made from the
adjacency matrix in the form of the matrix D
which contains currently the shortest distance
between nodes. The algorithm is presented as
follows (3).

This algorithm is based on the relaxation
principle, so that in each moment the highest
limit is maintained for evaluating the length of

International Scientific Conference “UNITECH 2019” – Gabrovo 319

the shortest path, which is initially equal to the
weight of the direct edge or its value is
INT_MAX if there is no edge. In the following
iterations, it is checked whether the current
evaluation can be shortened through another
node. The reconstruction of the shortest path
between two random nodes i and j can be
performed by using the matrix of the
predecessor T.

for (k = 0; k < n; k++)
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
if (d[i][j] > d[i][k] + d[k][j] && d[i][k] >= 0
&& d[k][j] >= 0 && d[i][k] != INT_MAX
&& d[k][j] != INT_MAX) {
t[i][j] = t[k][j];
d[i][j] = 1;
} (3)

Fig. 1. Printing the maze through the standard exit
(left)/in the file (right)

Solving the maze (option 7 from the

defined menu) solves the whole maze (it finds
the path from the entrance to the exit) or only
its part (it finds the path between certain
coordinates). Printing of maze (option 8) is
realized in two ways: printing (drawing) the
maze on the standard exit (Fig 1. Left) or
printing the maze (Fig 1. Right) on the file. By
choosing the second option, a text file is
created Lavirint.txt with the stated content.

CONCLUSION
The maze presents a set of connected nodes

and edges in which movement is enabled.
They are mostly used in games and when
created in the physical environment, they
enable the practice of the spatial orientation.
There are several methods for generating the
maze. In this paper, the spanning tree
algorithm is used. For generating the maze,
Kruskal’s algorithm was used, which passes
from the forest of unconnected graph nodes,
until it obtains a tree which is guaranteed to be
minimally spanning. For the purposes of
solving the maze, Floyd’s algorithm was used.
This algorithm was used for finding the
shortest distance between all sets of nodes in
the graph and the reconstruction of the
discovered shortest paths. Drawing the
generated maze with the choice of the
appropriate entrances and exits and paths
between them is performed through the
standard exit or an appropriate text file.
Further development of this work should be
directed towards the use of other algorithms
for generating a maze, where their
comparative analysis will be performed
through an adequate metric.

REFERENCE
[1] Levitin A., The Design and Analysis of

Algorithms, Pearson Education, 3rd ed, 2012.
[2] Tomašević M., Algoritmi i strukture podataka,

Akademska misao, 2008.
[3] Janičič P., Nikolić M., Veštačka inteligencija,

Elektronsko izdanje, Beograd, 2019.
[4] Foltin M., Automated Maze Generation and

Human Interaction, Masaryk University Faculty
of Informatics, Brno 2011.

[5] Haiming L., Qiyang X., Yong W., Research
and Improvement of Kruskal Algorithm,
Journal of Computer and Communications,
2017, 5, 63-69.

[6] Ramadhian F. H., Implementation of Prim's and
Kruskal's Algorithms' on Maze Generation,
Makalah IF2120 Matematika Diskrit – Sem. I
Tahun 2012/2013.

	introduction
	Introduction to the Mazes
	Kruskal’s and Floyd’s algorithm
	Generating the maze
	CONCLUSION
	REFERENCE

